• 제목/요약/키워드: Probability distribution function

검색결과 804건 처리시간 0.029초

유한수심에서의 불규칙파의 파고 분포 (Distribution of Irregular Wave Height in Finite Water Depth)

  • 안경모;마이클오찌
    • 한국해안해양공학회지
    • /
    • 제6권1호
    • /
    • pp.88-93
    • /
    • 1994
  • 유한수심에서의 불규칙파에 적용할 수 있는 파고의 확률분포함수를 2가지 해석적 방법으로 유도하였다. 첫번째 방법으로 새로이 유도된 확률분포함수는 Rayleigh 확률분포함수에 대한 직교 다항식을 유도함으로써 급수형태로 표시된다. 유도된 확률밀도함수를 비정규성이 강한 천해에서 측정한 파랑자료와 비교하였다. 확률밀도함수가 자료의 막대그래프와 잘 일치하였으나, 확률밀도함수가 급수로 표시되어 있기 때문에 파고가 큰 부분에서 음의 확률값이 된다. 비록 음의 확률값의 크기가 작다 하더라도 파고의 극치분포함수를 구하기에 부적절하다고 판단된다. 두번째 방법은 최대 엔트로피 법(maximum entropy method)을 적용하여 파고 분포와 매우 잘 일치하며, 극치파고분포와 파고의 통계적인 특성 등을 추정하는 데 매우 유용함을 알 수 있다. 그러나 최대 엔트로피 법을 사용했을 경우, 비정규분포 특성을 나타내는 변위의 분포함수와 파고의 분포함수 사이의 함수관계를 구할 수 없었다.

  • PDF

년유출량의 적정확률 분포형에 관한 연구 -낙동강 유역을 중심으로- (A Study of Probability Functions of Best Fit to Distribution of Annual Runoff -on the Nakdong River Basin-)

  • 조규상;이순탁
    • 물과 미래
    • /
    • 제7권2호
    • /
    • pp.107-111
    • /
    • 1974
  • Annual runoff in the Nakdong river basin has been analyzed to find the probability functions of best fit to distribution of historical annual runoff. The results obtained are as follows; (1) Log-normal 3-parameter disrtibution is believed as the probability function of best fit to historical distribution (2) Log-normal 3-parameter disrtibution is believed as the best fit probability function among Log-normal dist-ributions. (3) In the test of goodness of fit, $x^2-test$ shows that probability of $x^2-valus$ in Log-normal 3-parameter distribution is nearly more than 90%. But in the Simirnov-Kolmogorov test, hypotheses for the probability distributions cannot be rejected at significance level 5% & 1%. (4) Among 7 gauging stations, Dongchon & Koryung-Bridge's records show lower fitness to the theoretical probability functions than other 5 gauging station's

  • PDF

Notes on the Ratio and the Right-Tail Probability in a Log-Laplace Distribution

  • Woo, Jung-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권4호
    • /
    • pp.1171-1177
    • /
    • 2007
  • We consider estimation of the right-tail probability in a log-Laplace random variable, As we derive the density of ratio of two independent log-Laplace random variables, the k-th moment of the ratio is represented by a special mathematical function. and hence variance of the ratio can be represented by a psi-function.

  • PDF

순별증발량 자료의 적정 확률분포형 선정 (Selection of Appropriate Probability Distribution Types for Ten Days Evaporation Data)

  • 김선주;박재흥;강상진
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.338-343
    • /
    • 1998
  • This study is to select appropriate probability distributions for ten days evaporation data for the purpose of representing statistical characteristics of real evaporation data in Korea. Nine probability distribution functions were assumed to be underlying distributions for ten days evaporation data of 20 stations with the duration of 20 years. The parameter of each probability distribution function were estimated by the maximum likelihood approach, and appropriate probability distributions were selected from the goodness of fit test. Log Pearson type III model was selected as an appropriate probability distribution for ten days evaporation data in Korea.

  • PDF

QUANTIZATION FOR A PROBABILITY DISTRIBUTION GENERATED BY AN INFINITE ITERATED FUNCTION SYSTEM

  • Roychowdhury, Lakshmi;Roychowdhury, Mrinal Kanti
    • 대한수학회논문집
    • /
    • 제37권3호
    • /
    • pp.765-800
    • /
    • 2022
  • Quantization for probability distributions concerns the best approximation of a d-dimensional probability distribution P by a discrete probability with a given number n of supporting points. In this paper, we have considered a probability measure generated by an infinite iterated function system associated with a probability vector on ℝ. For such a probability measure P, an induction formula to determine the optimal sets of n-means and the nth quantization error for every natural number n is given. In addition, using the induction formula we give some results and observations about the optimal sets of n-means for all n ≥ 2.

확률론적 이론에 기초한 동적 통행시간 모형 정립 (Development of Probability Theory based Dynamic Travel Time Models)

  • 양철수
    • 대한교통학회지
    • /
    • 제29권3호
    • /
    • pp.83-91
    • /
    • 2011
  • 이 논문은 확률론적인 방법을 이용하여 동적 통행시간(dynamic travel time) 모형을 도출한다. 동적 통행시간 모형은 차량의 통행시간은 도로 공간상에서의 교통흐름 분포에 따라, 또는 통행구간 출발점에서 시간에 대한 교통흐름의 분포에 따라 결정된다고 가정하여 얻어진다. 이 모형들에서 교통흐름의 분포가 차량의 통행시간에 미치는 정도를 나타내는 확률밀도함수(probability density function)는 여러 가지 형태의 도입될 수 있으나 지수분포를 따른다고 가정한다.

Reliability-based stochastic finite element using the explicit probability density function

  • Rezan Chobdarian;Azad Yazdani;Hooshang Dabbagh;Mohammad-Rashid Salimi
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.349-359
    • /
    • 2023
  • This paper presents a technique for determining the optimal number of elements in stochastic finite element analysis based on reliability analysis. Using the change-of-variable perturbation stochastic finite element approach, the probability density function of the dynamic responses of stochastic structures is explicitly determined. This method combines the perturbation stochastic finite element method with the change-of-variable technique into a united model. To further examine the relationships between the random fields, discretization of the random field parameters, such as the variance function and the scale of fluctuation, is also performed. Accordingly, the reliability index is calculated based on the explicit probability density function of responses with Gaussian or non-Gaussian random fields in any number of elements corresponding to the random field discretization. The numerical examples illustrate the effectiveness of the proposed method for a one-dimensional cantilever reinforced concrete column and a two-dimensional steel plate shear wall. The benefit of this method is that the probability density function of responses can be obtained explicitly without the use simulation techniques. Any type of random variable with any statistical distribution can be incorporated into the calculations, regardless of the restrictions imposed by the type of statistical distribution of random variables. Consequently, this method can be utilized as a suitable guideline for the efficient implementation of stochastic finite element analysis of structures, regardless of the statistical distribution of random variables.

OPTIMAL APPROXIMATION BY ONE GAUSSIAN FUNCTION TO PROBABILITY DENSITY FUNCTIONS

  • Gwang Il Kim;Seung Yeon Cho;Doobae Jun
    • East Asian mathematical journal
    • /
    • 제39권5호
    • /
    • pp.537-547
    • /
    • 2023
  • In this paper, we introduce the optimal approximation by a Gaussian function for a probability density function. We show that the approximation can be obtained by solving a non-linear system of parameters of Gaussian function. Then, to understand the non-normality of the empirical distributions observed in financial markets, we consider the nearly Gaussian function that consists of an optimally approximated Gaussian function and a small periodically oscillating density function. We show that, depending on the parameters of the oscillation, the nearly Gaussian functions can have fairly thick heavy tails.

질화물 우선석출이 발생하는 결정립계 어긋남 각도의 통계 및 확률적 평가 (II) (Statistical and Probabilistic Assessment for the Misorientation Angle of a Grain Boundary for the Precipitation of in a Austenitic Stainless Steel (II))

  • 이상호;최병학;이태호;김성준;윤기봉;김선화
    • 대한금속재료학회지
    • /
    • 제46권9호
    • /
    • pp.554-562
    • /
    • 2008
  • The distribution and prediction interval for the misorientation angle of grain boundary at which $Cr_2N$ was precipitated during heating at $900^{\circ}C$ for $10^4$ sec were newly estimated, and followed by the estimation of mathematical and median rank methods. The probability density function of the misorientation angle can be estimated by a statistical analysis. And then the ($1-{\alpha}$)100% prediction interval of misorientation angle obtained by the estimated probability density function. If the estimated probability density function was symmetric then a prediction interval for the misorientation angle could be derived by the estimated probability density function. In the case of non-symmetric probability density function, the prediction interval could be obtained from the cumulative distribution function of the estimated probability density function. In this paper, 95, 99 and 99.73% prediction interval obtained by probability density function method and cumulative distribution function method and compared with the former results by median rank regression or mathematical method.

An importance sampling for a function of a multivariate random variable

  • Jae-Yeol Park;Hee-Geon Kang;Sunggon Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제31권1호
    • /
    • pp.65-85
    • /
    • 2024
  • The tail probability of a function of a multivariate random variable is not easy to estimate by the crude Monte Carlo simulation. When the occurrence of the function value over a threshold is rare, the accurate estimation of the corresponding probability requires a huge number of samples. When the explicit form of the cumulative distribution function of each component of the variable is known, the inverse transform likelihood ratio method is directly applicable scheme to estimate the tail probability efficiently. The method is a type of the importance sampling and its efficiency depends on the selection of the importance sampling distribution. When the cumulative distribution of the multivariate random variable is represented by a copula and its marginal distributions, we develop an iterative algorithm to find the optimal importance sampling distribution, and show the convergence of the algorithm. The performance of the proposed scheme is compared with the crude Monte Carlo simulation numerically.