• Title/Summary/Keyword: Probability density estimate

Search Result 136, Processing Time 0.029 seconds

A Probabilistic Approach for Mobile Robot Localization under RFID Tag Infrastructures

  • Seo, Dae-Sung;Won, Dae-Heui;Yang, Gwang-Woong;Choi, Moo-Sung;Kwon, Sang-Ju;Park, Joon-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1797-1801
    • /
    • 2005
  • SLAM(Simultaneous localization and mapping) and AI(Artificial intelligence) have been active research areas in robotics for two decades. In particular, localization is one of the most important issues in mobile robot research. Until now expensive sensors like a laser sensor have been used for the mobile robot's localization. Currently, as the RFID reader devices like antennas and RFID tags become increasingly smaller and cheaper, the proliferation of RFID technology is advancing rapidly. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used to identify the mobile robot's location on the smart floor. We discuss a number of challenges related to this approach, such as RFID tag distribution (density and structure), typing and clustering. In the smart floor using RFID tags, because the reader just can senses whether a RFID tag is in its sensing area, the localization error occurs as much as the sensing area of the RFID reader. And, until now, there is no study to estimate the pose of mobile robot using RFID tags. So, in this paper, two algorithms are suggested to. We use the Markov localization algorithm to reduce the location(X,Y) error and the Kalman Filter algorithm to estimate the pose(q) of a mobile robot. We applied these algorithms in our experiment with our personal robot CMR-P3. And we show the possibility of our probability approach using the cheap sensors like odometers and RFID tags for the mobile robot's localization on the smart floor.

  • PDF

Extraction of Corresponding Points Using EMSAC Algorithm (EMSAC 알고리듬을 이용한 대응점 추출에 관한 연구)

  • Ye, Soo-Young;Jeon, Ah-Young;Jeon, Gye-Rok;Nam, Ki-Gon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.44-50
    • /
    • 2007
  • In this paper, we proposed the algorithm for the extraction of the corresponding points from images. The proposed algorithm EMSAC is based on RANSAC and EM algorithms. In the RANSAC procedure, the N corresponding points are randomly selected from the observed total corresponding points to estimate the homography matrix, H. This procedure continues on its repetition until the optimum H are estimated within number of repetition maximum. Therefore, it takes much time and does not converge sometimes. To overcome the drawbacks, the EM algorithm was used for the selection of N corresponding points. The EM algorithm extracts the corresponding points with the highest probability density to estimate the optimum H. By the experiments, it is demonstrated that the proposed method has exact and fast performance on extraction of corresponding points by combining RANSAC with EM.

Spectro-Temporal Filtering Based on Soft Decision for Stereophonic Acoustic Echo Suppression (스테레오 음향학적 에코 제거를 위한 Soft Decision 기반 필터 확장 기법)

  • Lee, Chul Min;Bae, Soo Hyun;Kim, Jeung Hun;Kim, Nam Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1346-1351
    • /
    • 2014
  • We propose a novel approach for stereophonic acoustic echo suppression using spectro-temporal filtering based on soft decision. Unlike the conventional approaches estimating the echo pathes directly, the proposed technique can estimate stereo echo spectra without any double-talk detector. In order to improve the estimation of echo spectra, the extended power spectrum density matrix and echo overestimation control matrix are applied on this method. In addition, this echo suppression technique is based on soft decision technique using speech absence probability in STFT domain. Experimental results show that the proposed method improves compared with the conventional approaches.

Comparative Analysis of Effective RCS Prediction Methods for Chaff Clouds (효과적인 채프 구름의 RCS 예측 방법 비교 분석 연구)

  • Kim, Min;Lee, Myung-Jun;Lee, Seong-Hyeon;Park, Sung-ho;Kong, Young-Joo;Woo, Seon-Keol;Kim, Hong-Rak;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.233-240
    • /
    • 2018
  • Radar cross section (RCS) analysis of chaff clouds is essential for the accurate detection and tracking of missile targets using radar. For this purpose, we compare the performance of two existing methods of predicting RCS of chaff clouds. One method involves summing up the RCS values of individual chaffs in a cloud, while the other method predicts the RCS values using aerodynamic models based on the probability density function. In order to compare and analyze the two techniques more precisely, the RCS of a single chaff computer-aided design model consisting of a half wavelength dipole was calculated using the commercial electromagnetic numerical analysis software, FEKO 7.0, to estimate the RCS values of chaff clouds via simulation. Thus, we verified that our method using the probability density distribution model is capable of analyzing the RCS of chaff clouds more efficiently.

Development and Validation Test of Effective Wet Scavenging Contribution Regression Models Using Long-term Air Monitoring and Weather Database (장기간 대기오염 및 기상자료를 이용한 유효강수세정 기여율 회귀모델의 개발 및 유효성 검사)

  • Lim, Deukyong;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.3
    • /
    • pp.297-306
    • /
    • 2013
  • This study used long-term air and weather data from 2000 to 2009 as raw data sets to develop regression models in order to estimate precipitation scavenging contributions of ambient $PM_{10}$ and $NO_2$ in Korea. The data were initially analyzed to calculate scavenging ratio (SR), defined as the removal efficiency for $PM_{10}$ and $NO_2$ by actual precipitation. Next, the effective scavenging contributions (ESC) with considering precipitation probability density were calculated for each sector of precipitation range. Finally, the empirical regression equations for the two air pollutants were separately developed, and then the equations were applied to test the model validity with the raw data sets of 2010 and 2011, which were not involved in the modeling process. The results showed that the predicted $PM_{10}$ ESC by the model was 23.8% and the observed $PM_{10}$ ESCs were 23.6% in 2010 and 24.0% in 2011, respectively. As for $NO_2$, the predicted ESC by the model was 16.3% and the observed ESCs were 16.4% in 2010 and 16.6% in 2011, respectively. Thus the developed regression models fitted quite well the actual scavenging contribution for both ambient $PM_{10}$ and $NO_2$. The models can then be used as a good tool to quantitatively apportion the natural and anthropogenic sink contribution in Korea. However, to apply the models for far future, the precipitation probability density function (PPDF) as a weather variable in the model equations must be renewed periodically to increase prediction accuracy and reliability. Further, in order to apply the models in a specific local area, it is recommended that the long-term oriented local PPDF should be inserted in the models.

Evaluation of the Clark Unit Hydrograph Parameters Considering Basin and Meteorologic at Conditions : 1. Selection and Analysis of Representative Storm Events (유역 및 기상상태를 고려한 Clark 단위도의 매개변수 평가: 1. 대표 호우사상의 선정 및 분석)

  • Yoo, Chul-Sang;Kim, Kee-Wook;Lee, Ji-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.2 s.175
    • /
    • pp.159-170
    • /
    • 2007
  • This study evaluated the parameters of Clark unit hydrograph (UH) estimated using the rainfall-runoff measurements and evaluated their variability. This also includes the quantification of basin and meteorological factors using probability density functions, selection of storm events with mean affecting factors, and derivation of average parameters of the Clark UH from storm events selected. Summarizing the results from this procedure are as follows. (1) It is not easy to avoid much uncertainty on the decision of runoff characteristics (that is, the concentration time and storage coefficient) even with some rainfall-runoff events are available. (2) As the distribution function of concentration time is very skewed, a simple arithmetic mean may lead a biased estimate. That is, the arithmetic mean based on the normal distribution can not be representative anymore. The mode may well be the representative in this case. On the other hand, the storage coefficient shows a symmetric distribution function, so the arithmetic mean may be used use for its representative. For the basin in this study, the concentration time in this study is estimated to be about 7 hours, and the storage coefficient about 22 hours.

Prediction of Wind Damage Risk based on Estimation of Probability Distribution of Daily Maximum Wind Speed (일 최대풍속의 추정확률분포에 의한 농작물 강풍 피해 위험도 판정 방법)

  • Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.130-139
    • /
    • 2017
  • The crop damage caused by strong wind was predicted using the wind speed data available from Korean Meteorological Administration (KMA). Wind speed data measured at 19 automatic weather stations in 2012 were compared with wind data available from the KMA's digital forecast. Linear regression equations were derived using the maximum value of wind speed measurements for the three-hour period prior to a given hour and the digital forecasts at the three-hour interval. Estimates of daily maximum wind speed were obtained from the regression equation finding the greatest value among the maximum wind speed at the three-hour interval. The estimation error for the daily maximum wind speed was expressed using normal distribution and Weibull distribution probability density function. The daily maximum wind speed was compared with the critical wind speed that could cause crop damage to determine the level of stages for wind damage, e.g., "watch" or "warning." Spatial interpolation of the regression coefficient for the maximum wind speed, the standard deviation of the estimation error at the automated weather stations, the parameters of Weibull distribution was performed. These interpolated values at the four synoptic weather stations including Suncheon, Namwon, Imsil, and Jangsu were used to estimate the daily maximum wind speed in 2012. The wind damage risk was determined using the critical wind speed of 10m/s under the assumption that the fruit of a pear variety Mansamgil would begin to drop at 10 m/s. The results indicated that the Weibull distribution was more effective than the normal distribution for the estimation error probability distribution for assessing wind damage risk.

Input Variables Selection by Principal Component Analysis and Mutual Information Estimation (주요성분분석과 상호정보 추정에 의한 입력변수선택)

  • Cho, Yong-Hyun;Hong, Seong-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.220-225
    • /
    • 2007
  • This paper presents an efficient input variable selection method using both principal component analysis(PCA) and adaptive partition mutual information(AP-MI) estimation. PCA which is based on 2nd order statistics, is applied to prevent a overestimation by quickly removing the dependence between input variables. AP-MI estimation is also applied to estimate an accurate dependence information by equally partitioning the samples of input variable for calculating the probability density function. The proposed method has been applied to 2 problems for selecting the input variables, which are the 7 artificial signals of 500 samples and the 24 environmental pollution signals of 55 samples, respectively. The experimental results show that the proposed methods has a fast and accurate selection performance. The proposed method has also respectively better performance than AP-MI estimation without the PCA and regular partition MI estimation.

A Codeword Generation Technique to Reduce Dynamic Power Consumption in Tightly Coupled Transmission Lines (밀결합 전송선 상에서 전력 저감을 위한 코드워드 생성 기법)

  • Lim, Jae-Ho;Kim, Deok-Min;Kim, Seok-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.11
    • /
    • pp.9-17
    • /
    • 2011
  • As semiconductor process rapidly developed, the density of chips becomes higher and the space between adjacent lines narrows smaller. This trend increases the capacitance and inductance in interconnects and the coupling-capacitance of adjacent lines grows even bigger than the self-capacitance of themselves, especially in global interconnects. Inductive and capacitive coupling observed in these phenomena may cause serious problems in signal integrity. This paper proposes a codeword generation technique using extra interconnect lines to reduce the crosstalk caused by inductive and capacitive coupling and to reduce dynamic power consumption considering probability of input data. To estimate the performance of the proposed technique, the experimental results have been obtained using FastCap, FastHenry and HSPICE, and it has been shown that the power consumption using the proposed technique has yielded approximately 15% less than the results of the previous technique.

Predicting Harvest Maturity of the 'Fuji' Apple using a Beta Distribution Phenology Model based on Temperature (온도기반의 Beta Distribution Model 을 이용한 후지 사과의 성숙기 예측)

  • Choi, In-Tae;Shim, Kyo-Moon;Kim, Yong-Seok;Jung, Myung-Pyo
    • Journal of Environmental Science International
    • /
    • v.26 no.11
    • /
    • pp.1247-1253
    • /
    • 2017
  • The Fuji variety of apple, introduced in Japan, has excellent storage quality and good taste, such that it is the most commonly cultivated apple variety in Gunwi County, North Gyeongsang Province, Korean Peninsula. Accurate prediction of harvest maturity allows farmers to more efficiently manage their farm in important aspects such as working time, fruit storage, market shipment, and labor distribution. Temperature is one of the most important factors that determine plant growth, development, and yield. This paper reports on the beta distribution (function) model that can be used to simulate the the phenological response of plants to temperature. The beta function, commonly used as a skewed probability density in statistics, was introduced to estimate apple harvest maturity as a function of temperature in this study. The model parameters were daily maximum temperature, daily optimum temperature, and maximum growth rate. They were estimated from the input data of daily maximum and minimum temperature and apple harvest maturity. The difference in observed and predicted maturity day from 2009 to 2012, with optimal parameters, was from two days earlier to one day later.