• Title/Summary/Keyword: Probability Evaluation

Search Result 1,261, Processing Time 0.032 seconds

FUZZY FAULT TREE ANALYSIS

  • Jang, Dae-Heung
    • Journal of Korean Society for Quality Management
    • /
    • v.20 no.1
    • /
    • pp.107-117
    • /
    • 1992
  • Conventional fault tree analysis has several problems as the estimations and tolerances of the failure probability values. To overcome these problems, fuzzy concepts with natural language can be applied to conventional fault tree analysis. And, we propose the evaluation method of the imprecision of top/basic events and possibility importances of basic events.

  • PDF

The Case Study on Risk Assessment and Probability of Failure for Port Structure Reinforced by DCM Method (심층혼합처리공법이 적용된 항만 구조물의 파괴확률과 위험도 평가에 관한 사례 연구)

  • Kim, Byung Il;Park, Eon Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.53-64
    • /
    • 2018
  • In this study, the evaluation to probability of failure for risk assessment of port structures on DCM reinforced soils, where stability and risk assessment are increasing in importance, was performed. As a random variables affecting the risk of DCM improved ground, the design strength, superposition (overlap) of construction, strength of the natural ground, internal friction angle and unit weight of the modified ground were selected and applied to the risk assessment. In addition, the failure probability for the entire system under ordinary conditions and under earthquake conditions were analyzed. As a result, it was found that the highest coefficient of variation in the random variable for the risk assessment of the DCM improved ground is the design strength, but this does not have a great influence on the safety factor, ie, the risk of the system. The main risk factor for the failure probability of the system for the DCM reinforced soils was evaluated as horizontal sliding in case of external stability and compression failure in case of internal stability both at ordinary condition and earthquake condition. In addition, the failure probability for ordinary horizontal sliding is higher than that for earthquake failure, and the failure probability for ordinary compression failure is lower than that for earthquake failure. The ordinary failure probability of the entire system is similar to the failure probability on earthquake condition, but in this case, the risk of earthquake is somewhat higher.

An Approach to a Quantitative Evaluation of U-Service Survivability Reflecting Cyber-terrorism (사이버테러를 고려한 U-Service 생존성의 정량적 평가 방안)

  • Kim, Sung-Ki
    • Convergence Security Journal
    • /
    • v.11 no.6
    • /
    • pp.67-72
    • /
    • 2011
  • A system that provides a ubiquitous service is a networked system that has to overcome their circumstances that the service survivability is weak. the survivability of a networked system is defined as an ability of the system that can offer their services without interruption, regardless of whether components comprising the system are under failures, crashes, or physical attacks. This paper presents an approach that end users can obtain a quantitative evaluation of U-service survivability to reflect intended cyber attacks causing the networked system to fall into byzantine failures in addition to the definition of the survivability. In this paper, a Jini system based on wireless local area networks is used as an example for quantitative evaluation of U-service survivability. This paper also presents an continuous time markov chain (CTMC) Model for evaluation of survivability of U-service that a Jini system provides, and an approach to evaluate the survivability of the U-service as a blocking probability that end users can not access U-services.

Evaluation of multi-lane transverse reduction factor under random vehicle load

  • Yang, Xiaoyan;Gong, Jinxin;Xu, Bohan;Zhu, Jichao
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.725-736
    • /
    • 2017
  • This paper presents the two-, three-, and four-lane transverse reduction factor based on FEA method, probability theory, and the recently actual traffic flow data. A total of 72 composite girder bridges with various spans, number of lanes, loading mode, and bridge type are analyzed with time-varying static load FEA method by ANSYS, and the probability models of vehicle load effects at arbitrary-time point are developed. Based on these probability models, in accordance to the principle of the same exceeding probability, the multi-lane transverse reduction factor of these composite girder bridges and the relationship between the multi-lane transverse reduction factor and the span of bridge are determined. Finally, the multi-lane transverse reduction factor obtained is compared with those from AASHTO LRFD, BS5400, JTG D60 or Eurocode. The results show that the vehicle load effect at arbitrary-time point follows lognormal distribution. The two-, three-, and four-lane transverse reduction factors calculated by using FEA method and probability respectively range between 0.781 and 1.027, 0.616 and 0.795, 0.468 and 0.645. Furthermore, a correlation between the FEA and AASHTO LRFD, BS5400, JTG D60 or Eurocode transverse reduction factors is made for composite girder bridges. For the two-, three-, and four-lane bridge cases, the Eurocode code underestimated the FEA transverse reduction factors by 27%, 25% and 13%, respectively. This underestimation is more pronounced in short-span bridges. The AASHTO LRFD, BS5400 and JTG D60 codes overestimated the FEA transverse reduction factors. The FEA results highlight the importance of considering span length in determining the multi-lane transverse reduction factors when designing two-lane or more composite girder bridges. This paper will assist bridge engineers in quantifying the adjustment factors used in analyzing and designing multi-lane composite girder bridges.

Failure Probability Estimation of Flaw in CANDU Pressure Tube Considering the Dimensional Change (가동중 중수로 압력관의 외경과 두꼐 변화를 고려한 결함의 파손확률 예측)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2305-2311
    • /
    • 2002
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and heavy water coolant. Pressure tubes are installed horizontally inside the reactor and only selected samples are periodically examined during in-service inspection. In this respect, a probabilistic safety assessment method is more appropriate fur the assessment of overall pressure tube safety. The failure behavior of CANDU pressure tubes, however, is governed by delayed hydride cracking which is the major difference from pipings and reactor pressure vessels. Since the delayed hydride cracking has more widely distributed governing parameters, it is impossible to apply a general PFM methodology directly. In this paper, a PFM methodology for the safety assessment of CANDU pressure tubes is introduced by applying Monte Carlo simulation in determining failure probability Initial hydrogen concentration, flaw shape and depth, axial and radial crack growth rate and fracture toughness were considered as probabilistic variables. Parametric study has been done under the base of pressure tube dimension and hydride precipitation temperature in calculating failure probability. Unstable fracture and plastic collapse are used for the failure assessment. The estimated failure probability showed about three-order difference with changing dimensions of pressure tube.

Statistical Probability Analysis of Storage Temperatures of Domestic Refrigerator as a Risk Factor of Foodborne Illness Outbreak (식중독 발생 위해인자로서 가정용 냉장고의 온도에 대한 확률분포 분석)

  • Bahk, Gyung-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.373-376
    • /
    • 2010
  • The objective of this study was to present the proper probability distribution model based on the data obtained from surveys on domestic refrigerator food storage temperatures in home. Domestic refrigerator temperatures were determined as risk factors in foodborne disease outbreaks for microbial risk assessment (MRA). The temperature was measured by directly visiting 139 homes using a data logger from May to September of 2009. The overall mean temperature for all the refrigerators in the survey was $3.53{\pm}2.96^{\circ}C$, with 23.6% of the refrigerators measuring above $5^{\circ}C$. Probability distributions were also created using @RISK program based on the measured temperature data. Statistical ranking was determined by the goodness of fit (GOF, i.e., the Kolmogorov-Smirnov (KS) or Anderson-Darling (AD) test) to determine the proper probability distribution model. This result showed that the LogLogistic (-10.407, 13.616, 8.6107) distribution was found to be the most appropriate for the MRA model. The results of this study might be directly used as input variables in exposure evaluation for conducting MRA.

Evaluation of Failure Probability for Planar Failure Using Point Estimate Method (점추정법을 이용한 평면파괴의 파괴확률 신정)

  • Park, Hyuck-Jin
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.189-197
    • /
    • 2002
  • In recent years, the probabilistic analysis has been used in rock slope engineering. This is because uncertainty is pervasive in rock slope engineering and most geometric and geotechnical parameters of discontinuity and rock masses are involved with uncertainty. Whilst the traditional deterministic analysis method fails to properly deal with uncertainty, the probabilistic analysis has advantages quantifying the uncertainty in parameters. As a probabilistic analysis method, the Monte Carlo simulation has been used commonly. However, the Monte Carlo simulation requires many repeated calculations and therefore, needs much effort and time to calculate the probability of failure. In contrast, the point estimate method involves a simple calculation with moments for random variables. In this study the probability of failure in rock slope is evaluated by the point estimate method and the results are compared to the probability of failure obtained by Monte Carlo simulation method.

A Study on the Risk Evaluation using Acoustic Emission in Rock Slope (암반 비탈면에서 AE 기법을 이용한 위험도 평가 연구)

  • Byun, Yoseph;Kim, Sukchun;Seong, Joohyun;Chun, Byungsik;Jung, Hyuksang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.5-12
    • /
    • 2014
  • A slope may fail after construction owing to external factors such as localized rainfall, earthquake, and weathering. Therefore, the grasp of failure probability for slope failures is necessary to maintain their stability. In particular, it is very difficult to detect the symptoms of rock slope failure in advance by using traditional methods, such as displacement due to the brittleness of rocks. However, Acoustic Emission (AE) techniques can predict slope failures earlier than the traditional methods. This study grasped failure probability of slope by applying AE techniques to a rock slope with a history of collapse. When applying AE techniques to a slope that has a high probability of failure, the grasp of failure probability of the specific location became possible.

Analysis on Co-use Parameter in TV Band Using a Transmisssion Probability Concept of Interfering Transmitter (간섭 송신기의 전송확률 개념을 이용한 방송대역 공용 파라미터 분석)

  • Cho, Ju-Phil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1587-1592
    • /
    • 2012
  • Analysis on co-use parameters in TV frequency channels is essential to utilize a TV White Space(TVWS) efficiently. A transmission probability of interfering transmitter can be used as some criteria for performance evaluation of the systems that co-use the cochannels. We considered a duty cycle as a parameter for getting the method how heterogeneous systems can use simultaneously a co-channel in TVWS. We analyze the transmission probability of interfering transmitter with an assumption that the probability is the same as the duty cycle, a time that it spends in an active state as a fraction of the total under consideration. In order to make an analysis of relationship between duty cycle and performances of two systems. We take into consideration on the case that WLAN is an victim receiver and WiBro is a interfering transmitter. Analyzed coexistence results may be widely applied into the technique developed to get the coexisting condition for wireless devices using many communication protocols in same frequency.