• Title/Summary/Keyword: Probability Density function

Search Result 785, Processing Time 0.027 seconds

Stochastic analysis of external and parametric dynamical systems under sub-Gaussian Levy white-noise

  • Di Paola, Mario;Pirrotta, Antonina;Zingales, Massimiliano
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.373-386
    • /
    • 2008
  • In this study stochastic analysis of non-linear dynamical systems under ${\alpha}$-stable, multiplicative white noise has been conducted. The analysis has dealt with a special class of ${\alpha}$-stable stochastic processes namely sub-Gaussian white noises. In this setting the governing equation either of the probability density function or of the characteristic function of the dynamical response may be obtained considering the dynamical system forced by a Gaussian white noise with an uncertain factor with ${\alpha}/2$- stable distribution. This consideration yields the probability density function or the characteristic function of the response by means of a simple integral involving the probability density function of the system under Gaussian white noise and the probability density function of the ${\alpha}/2$-stable random parameter. Some numerical applications have been reported assessing the reliability of the proposed formulation. Moreover a proper way to perform digital simulation of the sub-Gaussian ${\alpha}$-stable random process preventing dynamical systems from numerical overflows has been reported and discussed in detail.

A Study on the Recursive Parameter Estimation Density Function Algorithm of the Probability (확률밀도합수의 축차모수추정방식에 관한 연구)

  • 한영렬;박진수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.9 no.4
    • /
    • pp.163-169
    • /
    • 1984
  • We propose a new parameter estimation algorithm that converges with probability one and in mean square, if the mean is the function of parameter of the probability density function. This recursive algorithm is applicable also even though the parameters we estimate are multiparameter case. And the results are shown by the computer simulation.

  • PDF

Estimation of Non-Gaussian Probability Density by Dynamic Bayesian Networks

  • Cho, Hyun-C.;Fadali, Sami M.;Lee, Kwon-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.408-413
    • /
    • 2005
  • A new methodology for discrete non-Gaussian probability density estimation is investigated in this paper based on a dynamic Bayesian network (DBN) and kernel functions. The estimator consists of a DBN in which the transition distribution is represented with kernel functions. The estimator parameters are determined through a recursive learning algorithm according to the maximum likelihood (ML) scheme. A discrete-type Poisson distribution is generated in a simulation experiment to evaluate the proposed method. In addition, an unknown probability density generated by nonlinear transformation of a Poisson random variable is simulated. Computer simulations numerically demonstrate that the method successfully estimates the unknown probability distribution function (PDF).

  • PDF

FRACTIONAL EULER'S INTEGRAL OF FIRST AND SECOND KINDS. APPLICATION TO FRACTIONAL HERMITE'S POLYNOMIALS AND TO PROBABILITY DENSITY OF FRACTIONAL ORDER

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.257-273
    • /
    • 2010
  • One can construct a theory of probability of fractional order in which the exponential function is replaced by the Mittag-Leffler function. In this framework, it seems of interest to generalize some useful classical mathematical tools, so that they are more suitable in fractional calculus. After a short background on fractional calculus based on modified Riemann Liouville derivative, one summarizes some definitions on probability density of fractional order (for the motive), and then one introduces successively fractional Euler's integrals (first and second kind) and fractional Hermite polynomials. Some properties of the Gaussian density of fractional order are exhibited. The fractional probability so introduced exhibits some relations with quantum probability.

Saddlepoint approximations for the ratio of two independent sequences of random variables

  • Cho, Dae-Hyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.255-262
    • /
    • 1998
  • In this paper, we study the saddlepoint approximations for the ratio of independent random variables. In Section 2, we derive the saddlepoint approximation to the probability density function. In Section 3, we represent a numerical example which shows that the errors are small even for small sample size.

  • PDF

Probability Distribution of Nonlinear Random Wave Heights Using Maximum Entropy Method (최대 엔트로피 방법을 이용한 비선형 불규칙 파고의 확률분포함수)

  • 안경모
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.204-210
    • /
    • 1998
  • This paper presents the development of the probability density function applicable for wave heights (peak-to-trough excursions) in finite water depth including shallow water depth. The probability distribution applicable to wave heights of a non-Gaussian random process is derived based on the concept of the maximum entropy method. When wave heights are limited by breaking wave heights (or water depth) and only first and second moments of wave heights are given, the probability density function developed is closed form and expressed in terms of wave parameters such as $H_m$(mean wave height), $H_{rms}$(root-mean-square wave height), $H_b$(breaking wave height). When higher than third moment of wave heights are given, it is necessary to solve the system of nonlinear integral equations numerically using Newton-Raphson method to obtain the parameters of probability density function which is maximizing the entropy function. The probability density function thusly derived agrees very well with the histogram of wave heights in finite water depth obtained during storm. The probability density function of wave heights developed using maximum entropy method appears to be useful in estimating extreme values and statistical properties of wave heights for the design of coastal structures.

  • PDF

Lagged Cross-Correlation of Probability Density Functions and Application to Blind Equalization

  • Kim, Namyong;Kwon, Ki-Hyeon;You, Young-Hwan
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.540-545
    • /
    • 2012
  • In this paper, the lagged cross-correlation of two probability density functions constructed by kernel density estimation is proposed, and by maximizing the proposed function, adaptive filtering algorithms for supervised and unsupervised training are also introduced. From the results of simulation for blind equalization applications in multipath channels with impulsive and slowly varying direct current (DC) bias noise, it is observed that Gaussian kernel of the proposed algorithm cuts out the large errors due to impulsive noise, and the output affected by the DC bias noise can be effectively controlled by the lag ${\tau}$ intrinsically embedded in the proposed function.

A Study on the Prediction of Fatigue Life by use of Probability Density Function (확률밀도함수를 이용한 피로균열 발생수명 예측에 관한 연구)

  • 김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.453-461
    • /
    • 1999
  • The estimation of fatigue life at the design stage is very important in order to arrive at feasible and cost effective solutions considering the total lifetime of the structure and machinery compo-nents. In this study the practical procedure of prediction of fatigue life by use of cumulative damage factors based on Miner-Palmgren hypothesis and probability density function is shown with a $135,000m^3$ LNG tank being used as an example. In particular the parameters of Weibull distribution taht determine the stress spectrum are dis-cussed. At the end some of uncertainties associated with fatigue life prediction are discussed. The main results obtained from this study are as follows: 1. The practical procedure of prediction of fatigue life by use of cumulative damage factors expressed in combination of probability density function and S-N data is proposed. 2. The calculated fatigue life is influenced by the shape parameter and stress block. The conser-vative fatigue design can be achieved when using higher value of shape parameter and the stress blocks divded into more stress blocks.

  • PDF