Background: Identification of radioisotopes for plastic scintillation detectors is challenging because their spectra have poor energy resolutions and lack photo peaks. To overcome this weakness, many researchers have conducted radioisotope identification studies using machine learning algorithms; however, the effect of data normalization on radioisotope identification has not been addressed yet. Furthermore, studies on machine learning-based radioisotope identifiers for plastic scintillation detectors are limited. Materials and Methods: In this study, machine learning-based radioisotope identifiers were implemented, and their performances according to data normalization methods were compared. Eight classes of radioisotopes consisting of combinations of 22Na, 60Co, and 137Cs, and the background, were defined. The training set was generated by the random sampling technique based on probabilistic density functions acquired by experiments and simulations, and test set was acquired by experiments. Support vector machine (SVM), artificial neural network (ANN), and convolutional neural network (CNN) were implemented as radioisotope identifiers with six data normalization methods, and trained using the generated training set. Results and Discussion: The implemented identifiers were evaluated by test sets acquired by experiments with and without gain shifts to confirm the robustness of the identifiers against the gain shift effect. Among the three machine learning-based radioisotope identifiers, prediction accuracy followed the order SVM > ANN > CNN, while the training time followed the order SVM > ANN > CNN. Conclusion: The prediction accuracy for the combined test sets was highest with the SVM. The CNN exhibited a minimum variation in prediction accuracy for each class, even though it had the lowest prediction accuracy for the combined test sets among three identifiers. The SVM exhibited the highest prediction accuracy for the combined test sets, and its training time was the shortest among three identifiers.
Since the Northridge earthquake (1994) and Kobe earthquake (1995), the concept of performance-based design has been actively introduced to design major structures and buildings. Recently, the seismic design code was established for fire protection facilities. Therefore, the important fire protection facilities should be designed and constructed according to the seismic design code. Accordingly, uniform hazard spectra (UHS), with annual exceedance probabilities, corresponding to the performance level, such as operational, immediate occupancy, life safety, and collapse prevention, are required for performance-based design. Using the method of probabilistic seismic hazard analysis (PSHA), the uniform hazard spectra for 5 major cities in Korea with a recurrence period of 500, 1,000, and 2,500 years corresponding to frequencies of (0.5, 1.0, 2.0, 5.0, 10.0)Hz and PGA, were analyzed. The expert panel was comprised of 10 members in seismology and tectonics. The ground motion prediction equations and several seismo tectonic models suggested by 10 expert panel members in seismology and tectonics were used as the input data for uniform hazard spectrum analysis. According to sensitivity analysis, the parameter of spectral ground motion prediction equations has a greater impact on the seismic hazard than seismotectonic models. The resulting uniform hazard spectra showed maximum values of the seismic hazard at a frequency of 10Hz and also showed the shape characteristics, which are similar to previous studies and related technical guides for nuclear facilities.
The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.
Kim, Hongkyoon;Shin, Chulsik;Lee, Taehyung;Lee, Jonggun;Park, Duhee
Journal of the Korean GEO-environmental Society
/
v.15
no.11
/
pp.67-75
/
2014
In this study, the staged seismic performance evaluations were conducted to the 91 high speed railway tunnels in use for checking whether to comply with the recent design criteria or not. In addition, the seismic fragility functions of the tunnels were developed to allow the probabilistic risk assessment. The results of the staged seismic performance evaluations which consist of a preliminary assessment and a detailed assessment, show that the tunnels comply with the recent design criteria. With reference to the results of previous studies, a form of the proposed seismic fragility functions was set as a log-normal distribution by PGA, and the parameters of the functions were determined by using the probability of damage for the design PGA level. The seismic fragility functions were developed for each types (Cut & Cover, NATM) of tunnels. The seismic fragility functions from this study and the existing research results (FEMA, 2004) were compared to evaluate the seismic performance level of the tunnels, as a result the tunnels of this study were relatively superior to the ASSM tunnels on the seismic performance.
The delamination is a special mode of failure occurring in composite laminates. Several numerical studies with finite element analysis have been carried out on the delamination behavior of unidirectional composite laminates. On the other hand, the fracture for the multi-directional composite laminates may occur not only along the resin-fiber interface between plies known as interply or interlaminar fracture but also within a ply known as interyarn or intralaminar fracture accompanied by matrix cracking and fiber bridging. In addition, interlaminar and intralaminar cracks appear at irregular proportions and intralaminar cracks proceeded at arbitrary angle. The probabilistic analysis method for the prediction of crack growth behavior within a layer is more advantageous than the deterministic analysis method. In this paper, we analyze the crack path when the mode I load is applied to the cross-ply carbon/epoxy composite laminates and collect and analyze the probability data to be used as the basis of the probabilistic analysis in the future. Two criteria for the theoretical analysis of the crack growth direction were proposed by analyzing the stress field at the crack tip of orthotropic materials. Using the proposed method, the crack growth directions of the cross-ply carbon/epoxy laminates were analyzed qualitatively and quantitatively and compared with experimental results.
Journal of the Korean Data and Information Science Society
/
v.25
no.2
/
pp.271-280
/
2014
Foot-and-mouth Disease (FMD) is a highly infectious and fatal viral livestock disease that affects cloven-hoofed animals domestic and wild and the FMD outbreak in Korea in 2010/2011 was a disastrous incident for the country and the economy. Thus, efforts at the national level are put to prevent foot-and-mouth disease and to reduce the damage in the case of outbreak. As one of these efforts, it is useful to study the spread of the disease by using probabilistic model. In fact, after the FMD epidemic in the UK occurred in 2001, many studies have been carried on the spread of the disease using a variety of stochastic models as an effort to prepare future outbreak of FMD. However, for the FMD outbreak in Korea occurred in 2010/2011, there are few study by utilizing probabilistic model. This paper assumes a stochastic spatial-temporal susceptible-infectious-removed (SIR) epidemic model for the 2010/2011 FMD outbreak to understand spread of the disease. Since data on infections of FMD disease during 2010/2011 outbreak of Aniaml and Plant Quarantine Agency and on the livestock farms from the nationwide census in 2011 of Statistics Korea do not have detail informations on address or missing values, we generate detail information on address by randomly allocating farms within corresponding Si/Gun area. The kernel function is estimated using the infection data and by using simulations, the susceptibility and transmission of the spatial-temporal stochastic SIR models are determined.
Park, Yei Jun;Yoo, Ji Young;Kwon, Hyun-Han;Kim, Tae-Woong
Journal of Korea Water Resources Association
/
v.47
no.5
/
pp.435-446
/
2014
Various drought indices developed from previous studies can not consider the inherent uncertainty of drought because they assess droughts using a pre-defined threshold. In this study, to consider inherent uncertainty embedded in monthly streamflow data, Hidden Markov Model (HMM) based drought index (HMDI) was proposed and then probabilistic assessment of hydrologic drought was performed using HMDI instead of using pre-defined threshold. Using monthly streamflow data (1966~2009) of Pyeongchang river and Upper Namhan river provided by Water Management Information System (WAMIS), applying the HMM after moving-averaging the data with 3, 6, 12 month windows, this study calculated the posterior probability of hidden state that becomes the HMDI. For verifying the method, this study compared the HMDI and Standardized Streamflow Index (SSI) which is one of drought indices using a pre-defined threshold. When using the SSI, only one value can be used as a criterion to determine the drought severity. However, the HMDI can classify the drought condition considering inherent uncertainty in observations and show the probability of each drought condition at a particular point in time. In addition, the comparison results based on actual drought events occurred near the basin indicated that the HMDI outperformed the SSI to represent the drought events.
Journal of the Korean Data and Information Science Society
/
v.24
no.1
/
pp.117-124
/
2013
Association rule of data mining techniques is the method to quantify the relationship between a set of items in a huge database, andhas been applied in various fields like internet shopping mall, healthcare, insurance, and education. There are three primary interestingness measures for association rule, support and confidence and lift. Confidence is the most important measure of these measures, and we generate some association rules using confidence. But it is an asymmetric measure and has only positive value. So we can face with difficult problems in generation of association rules. In this paper we apply the similarity measures by probabilistic interestingness measure (PIM) with all marginal proportions (AMP) to solve this problem. The comparative studies with support, confidences, lift, chi-square statistics, and some similarity measures by PIM with AMPare shown by numerical example. As the result, we knew that the similarity measures by PIM with AMP could be seen the degree of association same as confidence. And we could confirm the direction of association because they had the sign of their values, and select the best similarity measure by PIM with AMP.
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.16
no.4
/
pp.455-472
/
2018
It is important to study how to manage dry storage casks of spent nuclear fuels (SNF), because wet storage spaces for SNF will shortly be at full capacity in the Republic of Korea. The US has operated a dry storage cask system for several decades, and has carried out significant studies into how to successfully manage dry storage cask for SNF. This type of expertise and experience is currently lacking in the Republic of Korea. The degradation of dry casks is an important issue that must be considered. In particular, chloride-induced stress corrosion cracking (CISCC) is known to lead to the release of radioisotopes from canisters. The U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and the Electric Power Research Institute have undertaken research into the CISCC mechanism. In addition, Sandia National Laboratories (SNL) has extensively researched CISCC and how to manage it in dry storage canisters. In this review paper, the probabilistic model proposed by the SNL is analyzed and, based on this model, US-based CISCC research is reviewed in detail. This paper will inform the management of dry cask storage of SNF from light water reactors in austenite stainless steel canisters in the Republic of Korea.
Kim, Dongchang;Kwag, Shinyoung;Kim, Jitae;Eem, Seunghyun
Journal of the Society of Disaster Information
/
v.18
no.2
/
pp.252-260
/
2022
Purpose: As the intensity and frequency of natural hazards are increasing due to climate change, external events that affecting nuclear power plants(NPPs) may increase. NPPs must be protected from external events such as natural hazards and human-induced hazards. External events that may occur in NPPs should be identified, and external events that may affect NPPs should be identified. This study introduces the methodology of identification and screening methods for external events by literature review. Method: The literature survey was conducted on the identification and screening methods of external events for probabilistic safety assessment of NPPs. In addition, the regulations on the identification and screening of external events were investigated. Result: In order to minimize the cost of external event impact analysis of nuclear power plants, research on identifying and screening external events is being conducted. In general, in the identification process, all events that can occur at the NPPs are identified. In the screening process, external events are selected based on qualitative and quantitative criteria in most studies. Conclusions: The process of identifying and screening external events affecting NPPs is becoming important. This paper, summarize on how to identify and screen external events for a probabilistic safety assessment of NPPs. It is judged that research on bounding analysis and conservative analysis methods performed in the quantitative screening process of external events is necessary.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.