• Title/Summary/Keyword: Probabilistic Risk Assessment

Search Result 308, Processing Time 0.027 seconds

Optimization method for offsite consequence analysis by efficient plume segmentation

  • Seunghwan Kim;Sung-yeop Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3851-3863
    • /
    • 2024
  • The speed of offsite consequence analysis is highly important due to the extensive calculations required to handle all the scenarios for a single-unit or multi-unit Level 3 PSA (probabilistic safety assessment). To perform an offsite consequence analysis as part of Level 3 PSA, various input parameters are considered, amongst which certain parameters, such as plume segments, spatial grids, and particle size distributions, have flexible input formats. This study describes the development of an effective optimization method to reduce the analysis time as much as possible while maintaining the accuracy of the offsite consequence analysis results. The effect of plume segmentation on offsite consequence analysis was investigated by observing deviations in analysis results and changes in the required analysis times following changes in plume release. Then a plume segmentation optimization method based on the cumulative release fraction slope was developed to intensively analyze the sections with rapid release and to simplify the analysis for the sections with nonsignificant release. As a result of applying this method, the analysis time was reduced by about 54.5 % compared to the base case, while the resulting health effects showed very small deviations of 0.03 % and 1.77 % for early fatality risk and cancer fatality risk, respectively.

A Study on Severe Accident Management Scheme using LOCA Sequence Database System (원자력발전소의 냉각재상실사고 특성DB를 활용한 중대사고 관리체계연구)

  • Choi, Young;Park, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.172-178
    • /
    • 2014
  • In terms of an accident management, the cases causing severe core damage need to be analyzed and arranged systematically for an easy access to the results since the Three Mile Island (TMI) accident. The objectives of this paper are to explain how to identify the plant response and cope with its vulnerabilities using the probabilistic safety assessment (PSA) quantified results and severe accident database SARDB(Severe Accident Risk Data Bank) based on sequences analysis results. Although PSA has been performed for the Korean Standard Power Plants (KSNPs), and that it considered the necessary sequences for an assessment of the containment integrity. The developed Database (DB) system includes a graphical display for a plant and equipment status, previous research results by a knowledge-based technique, and the expected plant behaviour. The plant model used in this paper is oriented to the cases of loss of coolant accident (LOCA) is be used as a training simulator for a severe accident management.

Assessment of the directional extreme wind speeds of typhoons via the Copula function and Monte Carlo simulation

  • Wang, Jingcheng;Quan, Yong;Gu, Ming
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.141-153
    • /
    • 2020
  • Probabilistic information regarding directional extreme wind speeds is important for the precise estimation of the design wind loads on structures. A joint probability distribution model of directional extreme typhoon wind speeds is established using Monte Carlo simulation and empirical copula function to fully consider the correlations of extreme typhoon wind speeds among the different directions. With this model, a procedure for estimating directional extreme wind speeds for given return periods, which ensures that the overall risk is distributed uniformly by direction, is established. Taking 5 typhoon-prone cities in China as examples, the directional extreme typhoon wind speeds for given return periods estimated by the present method are compared with those estimated by the method proposed by Cook and Miller (1999). Two types of directional factors are obtained based on Cook and Miller (1999) and the UK standard's drafting committee (Standard B, 1997), and the directional risks for the given overall risks are discussed. The influences of the extreme wind speed correlations in the different directions and the simulated typhoon wind speed sample sizes on the estimated extreme wind speeds for a given return period are also discussed.

THE APPLICATION OF PSA TECHNIQUES TO THE VITAL AREA IDENTIFICATION OF NUCLEAR POWER PLANTS

  • HA JAEJOO;JUNG WOO SIK;PARK CHANG-KUE
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.259-264
    • /
    • 2005
  • This paper presents a vital area identification (VAI) method based on the current fault tree analysis (FTA) and probabilistic safety assessment (PSA) techniques for the physical protection of nuclear power plants. A structured framework of a top event prevention set analysis (TEPA) application to the VAI of nuclear power plants is also delineated. One of the important processes for physical protection in a nuclear power plant is VAI that is a process for identifying areas containing nuclear materials, structures, systems or components (SSCs) to be protected from sabotage, which could directly or indirectly lead to core damage and unacceptable radiological consequences. A software VIP (Vital area Identification Package based on the PSA method) is being developed by KAERI for the VAI of nuclear power plants. Furthermore, the KAERI fault tree solver FTREX (Fault Tree Reliability Evaluation eXpert) is specialized for the VIP to generate the candidates of the vital areas. FTREX can generate numerous MCSs for a huge fault tree with the lowest truncation limit and all possible prevention sets.

Seismic performance assessment of R.C. bridge piers designed with the Algerian seismic bridges regulation

  • Kehila, Fouad;Kibboua, Abderrahmane;Bechtoula, Hakim;Remki, Mustapha
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.701-713
    • /
    • 2018
  • Many bridges in Algeria were constructed without taking into account the seismic effect in the design. The implantation of a new regulation code RPOA-2008 requires a higher reinforcement ratio than with the seismic coefficient method, which is a common feature of the existing bridges. For better perception of the performance bridge piers and evaluation of the risk assessment of existing bridges, fragility analysis is an interesting tool to assess the vulnerability study of these structures. This paper presents a comparative performance of bridge piers designed with the seismic coefficient method and the new RPOA-2008. The performances of the designed bridge piers are assessed using thirty ground motion records and incremental dynamic analysis. Fragility curves for the bridge piers are plotted using probabilistic seismic demand model to perform the seismic vulnerability analysis. The impact of changing the reinforcement strength on the seismic behavior of the designed bridge piers is checked by fragility analysis. The fragility results reveal that the probability of damage with the RPOA-2008 is less and perform well comparing to the conventional design pier.

Development of Reliability Measurement Method and Tool for Nuclear Power Plant Safety Software (원자력 안전 소프트웨어 대상 신뢰도 측정 방법 및 도구 개발)

  • Lingjun Liu;Wooyoung Choi;Eunkyoung Jee;Duksan Ryu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.5
    • /
    • pp.227-235
    • /
    • 2024
  • Since nuclear power plants (NPPs) increasingly employ digital I&C systems, reliability evaluation for NPP software has become crucial for NPP probabilistic risk assessment. Several methods for estimating software reliability have been proposed, but there is no available tool support for those methods. To support NPP software manufacturers, we propose a reliability measurement tool for NPP software. We designed our tool to provide reliability estimation depending on available qualitative and quantitative information that users can offer. We applied the proposed tool to an industrial reactor protection system to evaluate the functionality of this tool. This tool can considerably facilitate the reliability assessment of NPP software.

Assessment of Freeway Crash Risk using Probe Vehicle Accelerometer (프로브차량 가속도센서를 이용한 고속도로 교통사고 위험도 평가기법)

  • Park, Jae-Hong;Oh, Cheol;Kang, Kyeong-Pyo
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.49-56
    • /
    • 2011
  • Understanding various casual factors affecting the occurrence of freeway traffic crash is a backbone of deriving effective countermeasures. The first step toward understanding such factors is to identify crash risks on freeways. Unlike existing studies, this study focused on the unsafe vehicle maneuvering that can be detected by in-vehicle sensors. The recent advancement of sensor technologies allows us to gather and analyze detailed microscopic events leading to crash occurrence such as the abrupt change in acceleration. This study used an accelerometer to capture the unsafe events. A set of candidate variables representing unsafe events were derived from analyzing acceleration data obtained by the accelerometer. Then, the crash risk was modeled by the binary logistic regression technique. The probabilistic outcome of crash risk can be provided by the proposed model. An application of the methodology assessing crash risk was presented, and further research items for the successful field implementation were also discussed.

Comparative analysis of existing reinforced concrete buildings damaged at different levels during past earthquakes using rapid assessment methods

  • Sezer Aynur;Hilal Meydanli Atalay
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.793-808
    • /
    • 2023
  • Türkiye is located in a region where destructive earthquakes are frequently experienced due to its geological characteristics and geographical location. Therefore, considering the possibility of a devastating earthquake at any time, determining the reinforced concrete (RC) building seismic safety, constructed before or after the current seismic buildings code, is one of the most important issues to be completed firstly. For this purpose, rapid assessment methods developed to quickly determine the seismic safety of buildings are available in the literature. Comparison of the principles of Principles of the Determination of Risky Structures-2019, Column and Wall Index Method, P25 Scoring Method and Improved Discriminant Analysis Method, which are among these methods, have been aimed within the scope of this study. Within the scope of this paper, a total of 43 buildings in the Yalova/Çınarcık region of Türkiye that the damage level was determined by street observation method immediately after the 1999 Kocaeli (Izmit) Earthquake; 15 buildings with heavy damage and 28 buildings with moderate damage were examined by rapid assessment methods. Although the risk detection difference was not separated as a clear line in any of the methods used, the results obtained from the rapid assessment methods are evaluated as being compatible with the detected after earthquake structural seismic behavior of the buildings. The PDRS-2019 and column and wall index method gave the most approximate results. In the results obtained from the analyzes; structural features such as number of floors, frame continuity, soft/weak story irregularity, effective shear strength area, existence of heavy overhangs in plan, type of structural system have been found to be significantly effective on the earthquake behavior of buildings.

Predicting Default of Construction Companies Using Bayesian Probabilistic Approach (베이지안 확률적 접근법을 이용한 건설업체 부도 예측에 관한 연구)

  • Hong, Sungmoon;Hwang, Jaeyeon;Kwon, Taewhan;Kim, Juhyung;Kim, Jaejun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.5
    • /
    • pp.13-21
    • /
    • 2016
  • Insolvency of construction companies that play the role of main contractors can lead to clients' losses due to non-fulfillment of construction contracts, and it can have negative effects on the financial soundness of construction companies and suppliers. The construction industry has the cash flow financial characteristic of receiving a project and getting payment based on the progress of the construction. As such, insolvency during project progress can lead to financial losses, which is why the prediction of construction companies is so important. The prediction of insolvency of Korean construction companies are often made through the KMV model from the KMV (Kealhofer McQuown and Vasicek) Company developed in the U.S. during the early 90s, but this model is insufficient in predicting construction companies because it was developed based on credit risk assessment of general companies and banks. In addition, the predictive performance of KMV value's insolvency probability is continuously being questioned due to lack of number of analyzed companies and data. Therefore, in order to resolve such issues, the Bayesian Probabilistic Approach is to be combined with the existing insolvency predictive probability model. This is because if the Prior Probability of Bayesian statistics can be appropriately predicted, reliable Posterior Probability can be predicted through ensured conditionality on the evidence despite the lack of data. Thus, this study is to measure the Expected Default Frequency (EDF) by utilizing the Bayesian Probabilistic Approach with the existing insolvency predictive probability model and predict the accuracy by comparing the result with the EDF of the existing model.

Microbial Risk Assessment of High Risk Vibrio Foodborne Illness Through Raw Oyster Consumption (생굴 섭취로 인한 고병원성 Vibrio균 식중독 위해평가)

  • Ha, Jimyeong;Lee, Jeeyeon;Oh, Hyemin;Shin, Il-Shik;Kim, Young-Mog;Park, Kwon-Sam;Yoon, Yohan
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • This study investigated the probability of foodborne illness caused by raw oyster consumption contaminated with high risk Vibrio species such as V. vulnificus and V. cholerae. Eighty-eight raw oyster samples were collected from the south coast, west coast and Seoul areas, and examined for the prevalence of high risk Vibrio species. The growth patterns of V. vulnificus and V. cholerae in raw oysters were evaluated, and consumption frequency and amounts for raw oyster were investigated from a Korean National Health and Nutrition Examination Survey. With the collected data, a risk assessment simulation was conducted to estimate the probability of foodborne illness caused by intake of raw oysters, using @RISK. Of 88 raw oysters, there were no V. vulnificus- or V. cholerae-positive samples. Thus, initial contamination levels of Vibrio species in raw oysters were estimated by the statistical methods developed by Vose and Sanaa, and the estimated value for the both Vibrio spp. was -3.6 Log CFU/g. In raw oyster, cell counts of V. vulnificus and V. cholerae remained unchanged. The incidence of raw oyster consumers was 0.35%, and the appropriate probabilistic distribution for the consumption amounts was the exponential distribution. A risk assessment simulation model was developed with the collected data, and the probability of the foodborne illness caused by the consumption of raw oyster was 9.08×10-15 for V. vulnificus and 8.16×10-13 for V. cholerae. Consumption frequency was the first factor, influencing the probability of foodborne illness.