Kim, Dong-San;Han, Sang Hoon;Park, Jin Hee;Lim, Ho-Gon;Kim, Jung Han
Nuclear Engineering and Technology
/
제50권8호
/
pp.1217-1233
/
2018
Following a surge of interest in multi-unit risk in the last few years, many recent studies have suggested methods for multi-unit probabilistic safety assessment (MUPSA) and addressed several related aspects. Most of the existing studies though focused on two-unit nuclear power plant (NPP) sites or used rather simplified probabilistic safety assessment (PSA) models to demonstrate the proposed approaches. When considering an NPP site with three or more units, some approaches are inapplicable or yield very conservative results. Since the number of such sites is increasing, there is a strong need to develop and validate practical approaches to the related MUPSA. This article provides several detailed approaches that are applicable to multi-unit Level 1 PSA for sites with up to six or more reactor units. To validate the approaches, a multi-unit Level 1 PSA model is developed and the site core damage frequency is estimated for each of four representative multi-unit initiators, as well as for the case of a simultaneous occurrence of independent single-unit initiators in multiple units. For this purpose, an NPP site with six identical OPR-1000 units is considered, with full-scale Level 1 PSA models for a specific OPR-1000 plant used as the base single-unit models.
Proceedings of the Korea Water Resources Association Conference
/
한국수자원학회 2016년도 학술발표회
/
pp.197-197
/
2016
Forecasting future drought events in a region plays a major role in water management and risk assessment of drought occurrences. The creeping characteristics of drought make it possible to mitigate drought's effects with accurate forecasting models. Drought forecasts are inevitably plagued by uncertainties, making it necessary to derive forecasts in a probabilistic framework. In this study, a new probabilistic scheme is proposed to forecast droughts, in which a discrete-time finite state-space hidden Markov model (HMM) is used aggregated with the Representative Concentration Pathway 8.5 (RCP) precipitation projection (HMM-RCP). The 3-month standardized precipitation index (SPI) is employed to assess the drought severity over the selected five stations in South Kore. A reversible jump Markov chain Monte Carlo algorithm is used for inference on the model parameters which includes several hidden states and the state specific parameters. We perform an RCP precipitation projection transformed SPI (RCP-SPI) weight-corrected post-processing for the HMM-based drought forecasting to derive a probabilistic forecast that considers uncertainties. Results showed that the HMM-RCP forecast mean values, as measured by forecasting skill scores, are much more accurate than those from conventional models and a climatology reference model at various lead times over the study sites. In addition, the probabilistic forecast verification technique, which includes the ranked probability skill score and the relative operating characteristic, is performed on the proposed model to check the performance. It is found that the HMM-RCP provides a probabilistic forecast with satisfactory evaluation for different drought severity categories, even with a long lead time. The overall results indicate that the proposed HMM-RCP shows a powerful skill for probabilistic drought forecasting.
The gust factor and turbulence intensity are two crucial parameters that characterize the properties of turbulence. In tropical cyclones (TCs), these parameters exhibit significant variability, yet there is a lack of established formulas to account for their probabilistic characteristics with consideration of their inherent connection. On this condition, a probabilistic analysis of gust factors and turbulence intensities of TCs is conducted based on fourteen sets of wind data collected at the Sutong Cable-stayed Bridge site. Initially, the turbulence intensities and gust factors of recorded data are computed, followed by an analysis of their probability densities across different ranges categorized by mean wind speed. The Gaussian, lognormal, and generalized extreme value (GEV) distributions are employed to fit the measured probability densities, with subsequent evaluation of their effectiveness. The Gumbel distribution, which is a specific instance of the GEV distribution, has been identified as an optimal choice for probabilistic characterizations of turbulence intensity and gust factor in TCs. The corresponding empirical models are then established through curve fitting. By utilizing the Gumbel distribution as a template, the nexus between the probability density functions of turbulence intensity and gust factor is built, leading to the development of a generalized probabilistic model that statistically describe turbulence intensity and gust factor in TCs. Finally, these empirical models are validated using measured data and compared with suggestions recommended by specifications.
Yilmaz, Mehmet F.;Caglayan, Barlas O.;Ozakgul, Kadir
Earthquakes and Structures
/
제17권1호
/
pp.91-99
/
2019
Fragility analysis is an effective tool that is frequently used for seismic risk assessment of bridges. There are three different approaches to derive a fragility curve: experimental, empirical and analytical. Both experimental and empirical methods to derive fragility curve are based on past earthquake reports and expert opinions which are not suitable for all bridges. Therefore, analytical fragility analysis becomes important. Nonlinear time history analysis is commonly used which is the most reliable method for determining probabilistic demand models. In this study, to determine the probabilistic demand models of bridges, time history analyses were performed considering both material and geometrical nonlinearities. Serviceability limit states for three different service velocities were considered as a performance goal. Also, support displacements, component yielding and collapse limits were taken into account. Both serviceability and component fragility were derived by using maximum likely hood methods. Finally, the seismic performance and critical members of the bridge were probabilistically determined and clearly presented.
Often, probabilistic fracture mechanics (PFM) approaches have been adopted to quantify the failure probabilities of Ni-base alloy components, especially due to primary water stress corrosion cracking (PWSCC), in a primary piping system of pressurized water reactors. In this paper, the key features of an advanced PFM code, PINEP-PWSCC (Probabilistic INtegrity Evaluation for nuclear Piping-PWSCC) for such purpose, are described. In developing the code, we adopted most recent research results and advanced models in calculation modules such as PWSCC crack initiation and growth models, a performance-based probability of detection (POD) model for Ni-base alloy welds, and so on. To verify the code, the failure probabilities for various Alloy 182 welds locations were evaluated and compared with field experience and other PFM codes. Finally, the effects of pre-existing crack, weld repair, and POD models on failure probability were evaluated to demonstrate the applicability of PINEP-PWSCC.
Park No-Wook;Chi Kwang-Hoon;Chung Chang-Jo F.;Kwon Byung-Doo
Proceedings of the KSRS Conference
/
대한원격탐사학회 2004년도 Proceedings of ISRS 2004
/
pp.622-625
/
2004
This paper presents multi-source spatial data integration models based on probability theory for landslide hazard assessment. Four probabilistic models such as empirical likelihood ratio estimation, logistic regression, generalized additive and predictive discriminant models are proposed and applied. The models proposed here are theoretically based on statistical relationships between landslide occurrences and input spatial data sets. Those models especially have the advantage of direct use of continuous data without any information loss. A case study from the Gangneung area, Korea was carried out to quantitatively assess those four models and to discuss operational issues.
Headed studs welded to steel beams and embedded within the concrete of deck slabs are vital components of modern composite floor systems, where safety and economy depend on the accurate predictions of the stud shear resistance. The multitude of existing deck profiles and the complex behavior of studs in deck slab ribs makes developing accurate and reliable mechanical or empirical design models challenging. The paper addresses this issue by presenting a machine learning (ML) model developed from the natural gradient boosting (NGBoost) algorithm capable of producing probabilistic predictions and a database of 464 push-out tests, which is considerably larger than the databases used for developing existing design models. The proposed model outperforms models based on other ML algorithms and existing descriptive equations, including those in EC4 and AISC 360, while offering probabilistic predictions unavailable from other models and producing higher shear resistances for many cases. The present study also showed that the stud shear resistance is insensitive to the concrete elastic modulus, stud welding type, location of slab reinforcement, and other parameters considered important by existing models. The NGBoost model was interpreted by evaluating the feature importance and dependence determined with the SHapley Additive exPlanations (SHAP) method. The model was calibrated via reliability analyses in accordance with the Eurocodes to ensure that its predictions meet the required reliability level and facilitate its use in design. An interactive open-source web application was created and deployed to the cloud to allow for convenient and rapid stud shear resistance predictions with the developed model.
Manufacturers and retailers are interested in how prices, promotions, discounts and other marketing variables can influence the sales and shares of the products that they produce or sell. Therefore, many models have been developed to predict the brand share. Since the customer choice models are usually used to predict the market share, here we use hybrid model of Probabilistic Neural Network and Artificial Bee colony Algorithm (PNN-ABC) that we have introduced to model consumer choice to predict brand share. The evaluation process is carried out using the same data set that we have used for modeling individual consumer choices in a retail coffee market. Then, to show good performance of this model we compare it with Artificial Neural Network with one hidden layer, Artificial Neural Network with two hidden layer, Artificial Neural Network trained with genetic algorithms (ANN-GA), and Probabilistic Neural Network. The evaluated results show that the offered model is outperforms better than other previous models, so it can be use as an effective tool for modeling consumer choice and predicting market share.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
한국방송공학회 2009년도 IWAIT
/
pp.128-135
/
2009
In this paper, we proposed an interactive GUI (Graphical User Interface) system to model buildings with an editable script. Our system also provides probabilistic finite-state machine (PFSM) to define the relationships of sub-models with transformation matrices and transition probabilities for constructing new novel building models automatically. User can not only get various building models by PFSM but also adjust the probabilities of sub-models from PFSM to get desired building models. As shown in the results, the various and vivid building models can be constructed easily and quickly for non-expert users. Besides, user can also edit the script file which is provided by our system to modify the properties directly.
The purpose of this study is to first evaluate the seismic behavior of ageing arch bridges by using the Intensity Measure - based demand and DCFD format, which is referred to as the fragility-hazard format. Then, an investigation is performed for their seismic vulnerability. Analytical models are created for bridges concerning different features and these models are subjected to Incremental Dynamic Analysis (IDA) analysis using a set of 22 earthquake records. The hazard curve and results of IDA analysis are employed to evaluate the return period of exceeding the limit states in the IM-based probabilistic performance-based context. Subsequently, the fragility-hazard format is used to assess factored demand, factored capacity, and the ratio of the factored demand to the factored capacity of the models with respect to different performance objectives. Finally, the vulnerability curves are obtained for the investigated bridges in terms of the loss ratio. The results revealed that decreasing the span length of the unreinforced arch bridges leads to the increase in the return period of exceeding various limit states and factored capacity and decrease in the displacement demand, the probability of failure, the factored demand, as well as the factored demand to factored capacity ratios, loss ratio, and seismic vulnerability. Finally, it is derived that the probability of the need for rehabilitation increases by an increase in the span length of the models.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.