

AN INTERACTIVE BUILDING MODELING SYSTEM BASED ON THE LEGO CONCEPT

Sheng-Yi Chen, Cong-Kai Lin, and Wen-Kai Tai

Department of Computer Science and Information Engineering,

National Dong Hwa University
Taiwan, R.O.C

E-mail: wktai@mail.ndhu.edu.tw

ABSTRACT

In this paper, we proposed an interactive GUI (Graphical
User Interface) system to model buildings with an editable
script. Our system also provides probabilistic finite-state
machine (PFSM) to define the relationships of sub-models
with transformation matrices and transition probabilities
for constructing new novel building models automatically.
User can not only get various building models by PFSM
but also adjust the probabilities of sub-models from PFSM
to get desired building models. As shown in the results, the
various and vivid building models can be constructed
easily and quickly for non-expert users. Besides, user can
also edit the script file which is provided by our system to
modify the properties directly.

Keywords: modeling, Lego concept, interactive
modeling, probabilistic FSM

1. INTRODUCTION

Nowadays, there are many methods to model buildings but
there are some problems when using these methods such as
domain knowledge, complex operations, in need of photos,
non-controllable results, and artistry, etc. In order to
provide a more convenient user interface, we proposed an
interactive GUI system and a novel procedural method
based on probabilistic finite-state machine to model
various buildings. Besides, user can also edit script files
obtained from our system to modify the result of buildings
directly.

Our proposed system is inspired from Lego concept. The
structure of many buildings is almost regular which we can
subdivide the building model into some sub-model as Lego
brick. Similarly, we also can subdivide the sub-model
continuously until the basic smallest component, terminal.
Therefore, we can use these terminals to construct new
novel buildings. In our proposed method, we subdivide a
building model into five levels including sub-model, shape,
face, column, and terminal.

We provide a friendly interactive GUI system. User can
edit a script file obtained from our system to modify the
properties including relationships of sub-models with
transformation matrices and transition probabilities directly.
Furthermore, we proposed a probabilistic finite-state
machine to construct new novel buildings automatically.
Our system will construct various building models with

different styles by given some different terminals. User can
also construct the desired buildings by adjusting the
probabilities of sub-models of PFSM.

The rest of this paper is organized as follows. In Section 2,
related work is described. The framework of our proposed
method is presented in Section 3. Experimental results are
shown in Section 4. Conclusions and future work are
described in Section 5.

2. RELATED WORK

Nowadays, there are many researches focused on the
modeling and rendering of 3D models and architectural
models by using procedural modeling, photo assisted
modeling, example-based modeling, and sketch-based
modeling. The procedural modeling techniques are
powerful in generating various models such as buildings,
plants, streets, etc. The common idea of these procedural
modeling techniques is to subdivide the buildings into
terminals (basic components of buildings) and combine the
redundant terminals to generate a new model. There are
many different kinds of combination methods such as
attributed grammars [5], Lindenmayer system (L-system)
[2], shape grammars [7] [8], Semi-Thue processes [14],
Chomsky grammars [15], and graph grammars [10].
Moreover, some researchers proposed methods to generate
buildings and cities automatically such as Prusinkiewicz et
al. [20], Parish et al. [22], Müller et al. [17] and Wonka et
al. [19].

L-system [2] is controllable and flexible in generating
branching objects like stem, streets, plants, etc. Although it
can be used for generating buildings with symmetric and
branch-like structure, buildings in general have stricter
spatial constraints and are not designed by growth process.
Therefore, L-system cannot be adapted easily to model
buildings. Shape grammars [7] method is suitable to design
and model architecture. It uses shape as the basis and
defines rules for the transformation and specification of 2D
and 3D shapes.

Müller et al. [17] proposed a method to generate massive
models with unprecedented level of detail using shape
grammar. This method provides user to control parameters
and grammar, and employs a pre-defined grammar to
generate buildings and architectures from a database of
given rules and attributes. This method with controllable
grammars that correspond to architectural principles is

128

useful for a wide range of architectural styles with
consistent outputs guaranteed and is the first focuses on the
aspect of volumetric mass modeling of buildings including
the design of roofs. Wonka et al. [19] proposed an
automatic grammar derivation approach for architecture
modeling based on an organized database of grammar rules.
Legakis et al. [13] proposed the cellular patterns to
construct details for architectural models. It is shown that
these grammars are useful in the analysis and construction
of many architectural styles by extracting data from actual
real-world cities or buildings. However, it is not suitable
for automatic or semi-automatic modeling because the
derivation of grammars needs user interventions. Besides,
Müller et al. [16] proposed a method to construct facade
details of buildings based on the idea of split rule.

Aliaga et al. [3] proposed a method to subdivide buildings
and construct a grammar from photograph for quick
sketching of new architectural structures in the style of the
original. Build-by-Number [4] is a method for quickly
designing, visualizing realistic architectural structures, and
capturing the real-world image data. It can retain the
features of models and provide users to design the new
structures which are rendered as same as the original
images. Example-based modeling method [18] synthesizes
many different large and complex buildings which are
difficult to generate manually or produce by existing
procedural methods. However, it has a considerable
limitation that the example models need to be decomposed
into pieces of model manually. Additionally, the example
models should be constructed carefully to prevent from
synthesizing models the same with examples because of
the tight constraints.

Shlyakhter et al. [11] proposed a sketch-based modeling
method to generate models of trees by fitting a coarse
branching from a set of photographs. Zeleznik et al. [21],
and Shesh and Chen [1] combine synthetic models with a
pen-based interface to construct models including simple
architecture. The method of Oh et al. [12] and Google
Sketchup [9] are developed as utilities for sketching
buildings. However, there are several problems need to be
addressed such as geometric interpretation, concise
notation, control of the derivation, and the design of actual
models. We proposed an interactive GUI system based on
the procedural modeling to provide an easy to use
modeling utility to construct building models as the
concept of playing Lego toys. We consider all of problems
by providing an interactive GUI, an editable script and a
probabilistic finite-state machine.

3. PROPOSED METHOD

The overview of our proposed interactive modeling system
is illustrated in Figure 1. User can manipulate the terminals
with properties (including transformation, probability, and
relationship) and rules by our interactive GUI system to
construct a new model. Our system records all the
properties and rules of model in the script. The results of
the new model can be displayed immediately for each user
interaction. We also provide a probabilistic finite-state

machine to allow user to construct new building models
easier and quicker.

Fig. 1: The overview of our proposed interactive modeling
system.

Fig. 2: The hierarchy of model.

 example of building and its threFig. 3: An e groups
including roof, floor, and base.

.1 The Hierarchy of Model

3

A typical building model usually contains a regular
structure that can be subdivided into some terminals. We
can use these terminals to construct a new building model
similar with Lego concept. We decompose a building
model into five levels including sub-model, shape, face,
column, and terminal. The hierarchy of model is shown in
Figure 2. For example, considering a square building
model (Figure 3) with three floors each has three windows,
we can regard one floor as a sub-model. Each sub-model
consists of three groups including roof, floor, and base with
square shape. In this square shape, we have four faces that

129

each face can be regarded as a wall with or without
windows. And, each face has three columns, each has one
window surrounded with trim and wall material. Therefore,
the window, trim, and wall material (such as brick, stone,
and so forth) are the lowest level terminals. We formalize
the model with the following general forms and definitions
respectively:
 Model M → {S0, S1, …, Sn-1}
 Sub-model S → ({U0, U1, …, Un-1}roof)
 ({U0, U1, …, Un-1}floor)
 ({U0, U1, …, Un-1}base)

 {T0, T1, …, Tn-1}
 Terminal T

erminal T is the smallest 3D

ways, and
illars which form the columns for our system.

th a
indow. The formed column is meaningful in itself.

ted as the
string F = C1C2C3C4, where Cj is the jth column.

Fig. 4: An example of a face with four columns.

ion 3.4: The shape U could be arranged by a set of

 set of faces to form different shapes from the
top view.

e sub-model consists of three groups after
choos f
sub-model.

Fig. 6: A real Lego brick example of sub-model.

 according to user’s need. Figure 7 shows
f a

F

relationship between real sub-models. (d) An example of
 with five sub-models.

 Shape U → {F0, F1, …, Fn-1}
 Face F → {C0, C1, …, Cn-1}
 Column C →

Definition 3.1: The t
component of building.
User subdivides the model into many terminals such as
doors, windows, walls, roofs, corners, stair
p

Definition 3.2: The column C is a set of terminals.
User determines which terminals could be grouped
together to form a column. For example, a wall, and a
window, can be grouped together to form a wall wi
w

Definition 3.3: The face F is a set of columns.
A face F of a building can be represented by a set of
columns with a production rule defined by user in
procedural modeling. In Figure 4, this face contains four
columns, and the production rule is represen

Definit
faces.
User connects faces side by side to form various shapes as
the basis shape of a building. Figure 5 shows that a user
connects a

Fig. 5: Examples of different shapes.

n-uniform size

Definition 3.5: The sub-model S is a no
block that contains three groups of shapes.
Like Lego brick concept, these bricks can be stacked upon
another and can also be regarded as a basic unit and a
component. Based on this concept, the sub-model is
regarded as a kind of brick which contains three groups of
shapes including roof, floor, and base in our definition.
Each of roof, floor, or base group is represented as the top,
middle, and bottom of brick respectively and has its own

features. Th
ing by user. Figure 6 shows an example o

Definition 3.6: The model M constructs from many
sub-models.
We can pile lots of bricks to construct a model with plenty
of different combinations. Therefore, we can construct a lot
of building models from our sub-models. In our definition,
each sub-model has five directional positions which can be
piled by another sub-model. When piling the sub-model,
we need to check the relationships of sub-models to see if
the position is legal. After piling several times, we can get
a building model
these five directional positions and an example o
building model.

(a) (b) (c) (d)
ig. 7: (a) Five directional positions of a sub-model can be

piled. (b) A relationship between sub-models. (c) A

building model is constructed

3.2 Model Construction

With our GUI system user manipulates each level of
components by creating, deleting, modifying, and doing
transformation. After manipulating, our system records all
the properties and rules in accordance with each terminal
by using script file. User can use not only the GUI system
but also script file to modify the properties and rules of
each level of components. In our script file, we define a
basic structure to record what the properties and what the
rules are. The script file is a simple text file to let user
understand and use easily. The following description is the
format we defined: Parameters, Sections, and Comments.
Parameter is the basic element which contains the
parameter name and its value, delimited by an equal sign
(=) as Name = Value. Section is used for grouping some
parameters by given a section name, in square brackets
([and]) as [Name]. In sections, it is not allowed for nested

130

declaration and appears only once on a line in the text.
Comment is essential for users to understand the script.
We use the semicolon (;) to denote that the text behind the
semicolon is the comment which is ignored by our system
while parsing the script. The comment is as ;comment text.
Figu r GUI
syste

m.

.3 Probabilistic Finite-State Machine

to modify the output function
f PFSM to provide additional information (transformation

r re 8 shows an example of our script file, and ou
m is shown in Figure 9.

Fig. 8: An example of script file.

Fig. 9: A screenshot of our interactive GUI syste

3
(PFSM)

Our idea is inspired by Vidal et al. [6] like hidden Markov
models. User could create a virtual building model by
given the relationships of sub-models with transformation
matrices and transition probabilities. Our system could
generate mass of various building models by traversing a
probabilistic finite-state machine (PFSM) we modified.
Although PFSMs are used in a variety of areas, it is
impracticable to be applied to our system directly. We
found that there are two problems in traditional finite-state
machine when applied to our modeling system. The first
problem is that the result of building model is not
controllable. Second, we need some information such as
translation, scaling, rotation, and sub-model ID while
constructing. We propose the PFSM to solve the above
problems by adjusting the probability of the sub-model. If
we want to increase the appearance times of some

sub-model, we just increase the probability of this
sub-model. Besides, we need
o
matrices and sub-model ID).

We define ou PFSM as follows: M = (Q, I, F, E, T, ω,
Γ) where Q is a finite set of states which is mapping to a
sub-model, q∈Q, I is a set of initial states which belongs
to Q, F is a set f final states, and qf ∈Q is a special (final)
state, ω is the output function (ωj: (Q-{ qf })j × pj →Γ,
j: a direction, j

o

∈J, J = {front, back, left, right, up}, and pj
is the probability for some direction), E is a state-based
symbol emission probability function (Ej: (Q-{ qf })j ×
Adj(Q-{ qf })j → P), T is a transition set from a state to

f })j × pj → Q,
subject to the following normalization conditions:
∑ ∈ =)(' 1)',(qAdjq j qqE , }){(fqQq −∈∀ , and Γ is the

output p

another state in one direction (Tj: (Q-{ q

arameters which contain sub-model ID and
ansformation matrices including translation, scaling, and

direction of current state. When we
get the final state, a new building model is constructed by

Fig. 11: There are three different probabilities for three
ls respectively.

tr
rotation.

We start from an arbitrary initial state as a root in the
PFSM, and the probabilistic transition between states is
determined by the emission probability function E. In
PFSM, state transition Tj is to determine which state is the
next state using the j

traversing the PFSM.

Fig. 10: A simple example of a virtual model.

different sub-mode

3.3.1 PFSM Construction

We provide an easy way to use the GUI system to construct
the PFSM for each sub-model. In Figure 10, we show a
simple example of a virtual model. Take a look at the
center sub-model of the virtual model. There are five
directional neighbors including front, back, left, right, and
up to let user to determine some information about
transformation matrices, probability, and sub-model ID for
each neighbor by using the GUI system. For example, in

131

Figure 11, consider the up direction which we give three
different probabilities for three different sub-models. While
traversing the PFSM, we can get different building models.
If we want to control the results of building model, we just
adjust the probabilities of sub-model. Beware that the
summation of all probabilities would be one. In addition,
we could also modify the script file directly according to
the data shows

 also check each directional neighbor to
ee wheth . Our

system and
onstructs a new building model based onΓ. Therefore, we

ings

Fig. 15: (a) and (b) are le examples of virtual
model.

Fig. 16: Some le buildings constructed by our
system.

 structure we defined in Figure 12. Figure 13
a script example of Figure 10.

Fig. 12: The data structure of virtual model.

Fig. 13: A script example of a virtual model in Figure 10.

3.3.1 Model Construction Algorithm Base on PFSM

Base on PFSM, we proposed an algorithm to construct a
building model. The pseudo code is shown in Figure 14.
The result of virtual model is M = (Q, I, F, E, T, ω, Γ).
First, we initiate a queue and check the five directional
neighbors to see whether the root can connect a sub-model
or not by using Tj for each root as initial state qi of I.
Additionally, we
s er it satisfies the probability defined by Ej

gets the parameters for each satisfied check
c
can run the process several times and get several different
building models for each time. If the result is not quite well,
we can adjust the transformation matrices or probabilities
of sub-model by using GUI system or modifying script file
directly. Figure 15 shows two different examples of virtual
building model.

4. EXPERIMENTAL RESULTS

The snapshot of our interactive GUI system of building
modeling is shown in Figure 9. We can model build
easily through our GUI system with some operations. User
can not only select the basic component of five levels
(including terminal, column, face, shape, sub-model, and
model) which user wants to manipulate from the dropdown
menus but also choose the desired operations to create,
delete, modify, or transform the basic components. In
addition, user can modify the properties such as
transformation, probability, and relationship, and our GUI
system will display each modified result immediately.

Fig. 14: The pseudo code of our proposed algorithm.

 two simp

examp are

Table 1: The number of terminals is used for each building

model in Figure 16.
Figure Num. of Terminals
16(a) 4
16(b) 6
16(c) 3
16(d) 6
16(e) 5
16(f) 5
16(g) 4
16(h) 5

We show some examples in Figure 16, and the number of
terminals we used is shown in Table 1 for each

emonstrated building example. Our first demonstrated
building is called “Pentagon” (Figure 16(a)), and the
terminals we used and parts of script are shown in Figure
17 and 18 respectively. Second example is called
“Skyscraper” (Figure 14(b)), and its terminals are shown in
Figure 19. Third, the simplest building is also shown in
Figure 16(c). Finally, the more complex building is shown
in Figure 20. Therefore, these results show that our
interactive GUI system can generate buildings range from

d

132

simple to complex. In Figure 21, we demonstrate that our
system can create an existing famous building and a new
novel building which is composed of the terminals of
existing one.

Given the sub-models and the PFSM as shown in Figure 22,
our interactive GUI system will produce these examples
shown in Figure 23 automatically by assigning different
probabilities for each sub-models. Using our interactive
GUI system, we only take from half to one hour to create a
new building model with PFSM averagely. All we need to
do is to subdivide a model into some terminals for input
model and to adjust properties (transformation matrices
and transition probabilities) of each level of component
(such as column, face, shape, and sub-model). Finally, we
use the PFSM to produce various new building models and
isplay in our system immediately. Besides, we can also

wledge to control the system well, but users

so proposed a

building models easily and rapidly. The
nly for

odels using PFSM.
 Reduci etwork; it
mean odels, we
can ju rminals to
reduce t rk and to
save th

c city
odeling system. Second, searching for

extensions for ou construct all the
uildings of an existing city with some specific style.

EFERENCES

em,"

ons on Visualization and
7.

[4] Daniel R. Aliaga, et al.

Visualize N ces," In IEEE

d
modify the script file directly, and the new building model
is also presented immediately. Our proposed interactive
GUI system is a flexible and efficient tool for people
without domain knowledge.

Table 2 summarizes the characteristics of eight different
algorithms with the comparisons of using parameter, user’s
manipulation, interactive control, requiring photo, domain
knowledge, decomposed models, and artistry. In shape
grammars [7] and L-system [2], their methods require
domain kno
who use our proposed system can produce building models
easily even without domain knowledge or for non-expert
users. In short, although our system does not work well for
all kinds of buildings, it provides a powerful, yet simple to
use utility.

Fig. 17: All terminals are used in the Pentagon.

5. CONCLUSIONS AND FUTURE WORK

We presented an interactive GUI system to model a
building with an editable script. We al

The

probabilistic finite-state machine to construct new novel
and various
proposed GUI system is well appropriate not o
advanced users but also for non-expert users. Our
contributions are summarized as follows:

 An interactive GUI system for user to model new
buildings.

 Increasing multiplicity of m
ng the quantity of transmission on n

s that when we transmit the building m
st only transmit the properties and te

he quantity of transmission on netwo
e transmitting time.

Fig. 18: Parts of script of Pentagon.

Fig. 19: All terminals are used in the Skyscraper.

Some future work is worthy to be addressed. First, we are
exploring to combine our system with an automati
m we are also

r GUI system to
b
Moreover, we look forward to improving in model
construction and visualization in computer graphics.

R

[1] Amit Shesh and Baoquan Chen, et al. "Smartpaper: An

Interactive and User Friendly Sketching Syst
Computer Graphics Forum Vol. 23., No. 3., pp.
301–310, 2004.

[2] Aristid Lindenmayer. "Mathematical Models for
Cellular Interaction in Development," In Journal of

oretical Biology, Vol. 18. pp. 280–315, 1968.
[3] Daniel G. Aliaga, Paul A. Rosen, and Daniel R. Bekins,

et al. "Style Grammars for Interactive Visualization of
Architecture," IEEE Transacti
Computer Graphics Vol. 13. No.4. pp. 786–797, 200

Bekins, and Daniel G.
"Build-by-number: Rearranging the Real World to

ovel Architectural Spa
Visualization, Vol. 19., 2005.

133

Fig. 20: The more complex building, Cathedral, is
constructed by our system.

Fig. 21: Two different kinds of skyscraper are constructed

Vol. 2 No.

lard, Colin de la Higuera,

Formal Aspects of Shape

:

raph Grammars and

ree Models from
Instrumented Photographs," I

plications Vol
[gang S rzlinger, an ohn Danahy

paring SESA and Sket g on Paper
ual 3D gn," EU RAPHICS

Workshop on Sketch-Based Interfaces and Modeling

, New

omputability, Complexity, and Languages,

Theory of

deling of

al. "Proocedural

7: Proceedings of the 2007 symposium on

 Ribarsky, et al. "Instant Architecture," ACM

. 22: Th SM with sub-m els is used fo
nstructi ifferent buildin in Figure 23.

by the same terminals.
[5] Donald E. Knuth, et al. "Semantics of context-free

languages," Theory of Computing Systems
2. pp. 127–145, 1968.

[6] Enrique Vidal, Frank Thol
Francisco Casacuberta, and Rafael C. Carrasco, et al.
"Probabilistic Finite-state Machines–PartII," IEEE
Transactions on Pattern Analysis and Machine
Intelligence Vol. 27., No. 7., pp. 1026–1039, 2005.

[7] George Stiny. "Pictorial and
and Shape Grammars and Aesthetic Systems,"
Birkhauser Verlag, Switzerland, 1975.

[8] George Stiny and William J. Mitchell, et al. "The
Palladian Grammar," Environment and Planning B
Planning & Design Vol. 5., pp. 5–18, 1978.

[9] GOOGLE, et al. Google Sketchup. Google,
www.sketchup.com, 2006.

[10] H. Ehrig, G. Engels, H.-J Kreowski, and Grzegorz
Rozenberg, et al. "Handbook of G
Computing by Graph Transformation: Applications,
Languages and Tools, " World Scientific Publishing
Company, Singapore, 1999.

[11] Ilya Shlyakhter, Max Rozenoer, Julie Dorsey, and Seth
J. Teller, et al. "Reconstructing 3D T

EEE Computer Graphics
and Ap . 21., No. 3., pp. 53–61, 2001.

12] Ji-Young Oh, Wolf tue d J ,
et al. "Com ME chin
for Concept Desi ROG

Vol. 10., No. 2., pp. 81–88, 2005.
[13] Justin Legakis, Julie Dorsey, and Steven J. Gortler, et

al. "Feature-based Cellular Texturing for Architectural
Models," In SIGGRAPH 2001, Computer Graphics
Proceedings, ACM Press / ACM SIGGRAPH
York, NY, USA, pp. 309–316, 2001.

[14] Martin D. Davis, Ron Sigal, and Elaine J. Weyuker, et
al. "C
Second Edition: Fundamentals of Theoretical
Computer Science," 2nd ed. Academic Press
Professional, Inc., San Diego, CA, USA, 1994.

[15] Michael Sipser. "Introduction to the
Computation," 2nd ed. Course Technology, Boston,
1996.

[16] Pascal Müller, Gang Zeng, Peter Wonka, and Luc Van
Gool, et al. "Image-based Procedural Mo
Facades," ACM Transactions on Graphics Vol. 26. No.
3. pp. 335–342, 2007.

[17] Pascal Müller, Peter Wonka, Simon Haegler, Andreas
Ulmer and Luc Van Gool, et
Modeling of Buildings," ACM Transactions on
Graphics Vol. 25. No. 3. pp. 614–623, 2006.

[18] Paul Merrell. "Example-based Model Synthesis," In
I3D ’0
Interactive 3D Graphics and Games, ACM Press, New
York, NY, USA, pp. 105–112, 2007.

[19] Peter Wonka, Michael Wimmer, François Sillion, and
William
Transactions on Graphics Vol. 22., No. 4., pp. 669–677,
2003.

[20] Przemyslaw Prusinkiewicz and Aristid Lindenmayer,
et al. "The Algorithmic Beauty of Plants," 1st ed.
Springer-Verlag New York, Inc., New York, NY, USA,
1990.

[21] Robert C. Zeleznik, Kenneth P. Herndon, and John F.
Hughes, et al. "Sketch: An Interface for Sketching 3D
Scenes," In SIGGRAPH ’07: ACM SIGGRAPH 2007
courses, pp. 19, 2007.

[22] Yoav I. H. Parish and Pascal Müller, et al. "Procedural
Modeling of Cities," In SIGGRAPH '01: Proceedings
of the 28th annual conference on Computer graphics
and Interactive techniques, pp. 301–308, 2001.

Fig e PF od r
co ng d gs

134

Table 2: parison bet en eight ferent m ods.

Par ter Mani tion Interactive P Knowledge Decomp model Artistry
Com we dif eth

Method ame pula hoto osed
Shape Grammars [7] Y N N N Y Y N
L-system [2] Y N N N Y Y N
Procedural [17] Y N N N Y N N
Sketch-based[21] N Y Y N N N Y
Example-based [18] Y Y N N Y Y N
Build-by-Number [4] Y Y Y Y Y N N
Style Grammars [3] Y Y Y Y Y N N
Our method Y Y Y N N Y N

Fig. 23: Different example buildings are constructed by the
PFSM in Figure 22.

135

