• Title/Summary/Keyword: Probabilistic Density

Search Result 193, Processing Time 0.028 seconds

Monte Carlo analysis of the induced cracked zone by single-hole rock explosion

  • Shadabfar, Mahdi;Huang, Hongwei;Wang, Yuan;Wu, Chenglong
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.289-300
    • /
    • 2020
  • Estimating the damage induced by an explosion around a blast hole has always been a challenging issue in geotechnical engineering. It is difficult to determine an exact dimension for damage zone since many parameters are involved in the formation of failures, and there are some uncertainties lying in these parameters. Thus, the present study adopted a probabilistic approach towards this problem. First, a reliability model of the problem was established and the failure probability of induced damage was calculated. Then, the corresponding exceedance risk curve was developed indicating the relation between the failure probability and the cracked zone radius. The obtained risk curve indicated that the failure probability drops dramatically by increasing the cracked zone radius so that the probability of exceedance for any crack length greater than 4.5 m is less than 5%. Moreover, the effect of each parameter involved in the probability of failure, including blast hole radius, explosive density, detonation velocity, and tensile strength of the rock, was evaluated by using a sensitivity analysis. Finally, the impact of the decoupling ratio on the reduction of failures was investigated and the location of its maximum influence was demonstrated around the blast point.

Evaluation of soil spatial variability by micro-structure simulation

  • Fei, Suozhu;Tan, Xiaohui;Wang, Xue;Du, Linfeng;Sun, Zhihao
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.565-572
    • /
    • 2019
  • Spatial variability is an inherent characteristic of soil, and auto-correlation length (ACL) is a very important parameter in the reliability or probabilistic analyses of geotechnical engineering that consider the spatial variability of soils. Current methods for estimating the ACL need a large amount of laboratory or in-situ experiments, which is a great obstacle to the application of random field theory to geotechnical reliability analysis and design. To estimate the ACL reasonably and efficiently, we propose a micro-structure based numerical simulation method. The quartet structure generation set algorithm is used to generate stochastic numerical micro-structure of soils, and scanning electron microscope test of soil samples combined with digital image processing technique is adopted to obtain parameters needed in the QSGS algorithm. Then, 2-point correlation function is adopted to calculate the ACL based on the generated numerical micro-structure of soils. Results of a case study shows that the ACL can be estimated efficiently using the proposed method. Sensitivity analysis demonstrates that the ACL will become stable with the increase of mesh density and model size. A model size of $300{\times}300$ with a grid size of $1{\times}1$ is suitable for the calculation of the ACL of clayey soils.

Parametric survival model based on the Lévy distribution

  • Valencia-Orozco, Andrea;Tovar-Cuevas, Jose R.
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.5
    • /
    • pp.445-461
    • /
    • 2019
  • It is possible that data are not always fitted with sufficient precision by the existing distributions; therefore this article presents a methodology that enables the use of families of asymmetric distributions as alternative probabilistic models for survival analysis, with censorship on the right, different from those usually studied (the Exponential, Gamma, Weibull, and Lognormal distributions). We use a more flexible parametric model in terms of density behavior, assuming that data can be fit by a distribution of stable distribution families considered unconventional in the analyses of survival data that are appropriate when extreme values occur, with small probabilities that should not be ignored. In the methodology, the determination of the analytical expression of the risk function h(t) of the $L{\acute{e}}vy$ distribution is included, as it is not usually reported in the literature. A simulation was conducted to evaluate the performance of the candidate distribution when modeling survival times, including the estimation of parameters via the maximum likelihood method, survival function ${\hat{S}}$(t) and Kaplan-Meier estimator. The obtained estimates did not exhibit significant changes for different sample sizes and censorship fractions in the sample. To illustrate the usefulness of the proposed methodology, an application with real data, regarding the survival times of patients with colon cancer, was considered.

An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part I = generalisation

  • Kim, Do Kyun;Wong, Eileen Wee Chin;Cho, Nak-Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.657-666
    • /
    • 2020
  • A reliable and cost-effective technique for the development of corrosion damage model is introduced to predict nonlinear time-dependent corrosion wastage of steel structures. A detailed explanation on how to propose a generalised mathematical formulation of the corrosion model is investigated in this paper (Part I), and verification and application of the developed method are covered in the following paper (Part II) by adopting corrosion data of a ship's ballast tank structure. In this study, probabilistic approaches including statistical analysis were applied to select the best fit probability density function (PDF) for the measured corrosion data. The sub-parameters of selected PDF, e.g., the largest extreme value distribution consisting of scale, and shape parameters, can be formulated as a function of time using curve fitting method. The proposed technique to formulate the refined time-dependent corrosion wastage model (TDCWM) will be useful for engineers as it provides an easy and accurate prediction of the 1) starting time of corrosion, 2) remaining life of the structure, and 3) nonlinear corrosion damage amount over time. In addition, the obtained outcome can be utilised for the development of simplified engineering software shown in Appendix B.

Oil Painting Analysis with Statistical Characteristics of Acquired Image (통계적 특성을 이용한 획득 영상의 정보 해석 : 유화의 영상 정보를 중심으로)

  • Ryu, Ho;Moon, Il-young
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.163-167
    • /
    • 2018
  • Probabilistic approach is applied to the experiment of Probability Density Function to get the information. Especially this method will be useful to make the montage to compare similarity. But in the case of art painting, it is more difficult than montage image. In this case, we should study the habit of painter with characteristic point in the paintings. Especially we will study characteristic point in the oil paintings to decide truth or falsehood in this paper.

Wind-induced random vibration of saddle membrane structures: Theoretical and experimental study

  • Rongjie Pan;Changjiang Liu;Dong Li;Yuanjun Sun;Weibin Huang;Ziye Chen
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.133-147
    • /
    • 2023
  • The random vibration of saddle membrane structures under wind load is studied theoretically and experimentally. First, the nonlinear random vibration differential equations of saddle membrane structures under wind loads are established based on von Karman's large deflection theory, thin shell theory and potential flow theory. The probabilistic density function (PDF) and its corresponding statistical parameters of the displacement response of membrane structure are obtained by using the diffusion process theory and the Fokker Planck Kolmogorov equation method (FPK) to solve the equation. Furthermore, a wind tunnel test is carried out to obtain the displacement time history data of the test model under wind load, and the statistical characteristics of the displacement time history of the prototype model are obtained by similarity theory and probability statistics method. Finally, the rationality of the theoretical model is verified by comparing the experimental model with the theoretical model. The results show that the theoretical model agrees with the experimental model, and the random vibration response can be effectively reduced by increasing the initial pretension force and the rise-span ratio within a certain range. The research methods can provide a theoretical reference for the random vibration of the membrane structure, and also be the foundation of structural reliability of membrane structure based on wind-induced response.

Application of probabilistic method to determination of aerodynamic force coefficients on tall buildings

  • Yong Chul Kim;Shuyang Cao
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.249-261
    • /
    • 2023
  • Aerodynamic force coefficients are generally prescribed by an ensemble average of ten and/or twenty 10-minute samples. However, this makes it difficult to identify the exact probability distribution and exceedance probability of the prescribed values. In this study, 12,600 10-minute samples on three tall buildings were measured, and the probability distributions were first identified and the aerodynamic force coefficients corresponding to the specific non-exceedance probabilities (cumulative probabilities) of wind load were then evaluated. It was found that the probability distributions of the mean and fluctuating aerodynamic force coefficients followed a normal distribution. The ratios of aerodynamic force coefficients corresponding to the specific non-exceedance probabilities (Cf,Non) to the ensemble average of 12,600 samples (Cf,Ens), which was defined as an adjusting factor (Cf,Non/Cf,Ens), were less than 2%. The effect of coefficient of variation of wind speed on the adjusting factor is larger than that of the annual non-exceedance probability of wind load. The non-exceedance probabilities of the aerodynamic force coefficient is between PC,nonex = 50% and 60% regardless of force components and aspect ratios. The adjusting factors from the Gumbel distribution were larger than those from the normal distribution.

An Adaptive Anti-collision Algorithm for RFID Systems (RFID 시스템에서의 적응형 리더 충돌 방지 알고리즘)

  • Ok, Chi-Young;Quan, Cheng-Hao;Choi, Jin-Chul;Choi, Gil-Young;Mo, Hee-Sook;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.4
    • /
    • pp.53-63
    • /
    • 2008
  • Reader collision may occur when neighboring RFID readers use the same channel at the same time. Especially when the readers are operated in dense mode, even though many channels are available, because of frequent reader collisions we can not guarantee the performance of RFID readers. Conventional solutions such as FH(Frequency Hopping) or LBT(Listen Before Talk) are not effective in this situation because they can not schedule RFID readers effectively when RFID readers are operated in multi-channel, dense reader mode, In this paper, we propose a new RFID reader anti-collision algorithm which employs LBT, random backoff before channel access, and probabilistic channel hopping at the same time. While LBT and Random backoff before channel access reduces collisions between competing readers, probabilistic channel hopping increases channel utilization by adaptively changing the hopping probability by reflecting the reader density and utilization. Simulation results shows that our algorithm outperforms conventional methods.

Estimation of Frequency of Storm Surge Heights on the West and South Coasts of Korea Using Synthesized Typhoons (확률론적 합성태풍을 이용한 서남해안 빈도 해일고 산정)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.241-252
    • /
    • 2019
  • To choose appropriate countermeasures against potential coastal disaster damages caused by a storm surge, it is necessary to estimate the frequency of storm surge heights estimation. As the coastal populations size in the past was small, the tropical cyclone risk model (TCRM) was used to generate 176,689 synthetic typhoons. In simulation, historical paths and central pressures were incorporated as a probability density function. Moreover, to consider the typhoon characteristics that resurfaced or decayed after landfall on the southeast coast of China, incorporated the shift angle of the historical typhoon as a function of the probability density function and applied it as a damping parameter. Thus, the passing rate of typhoons moving from the southeast coast of China to the south coast has improved. The characteristics of the typhoon were analyzed from the historical typhoon information using correlations between the central pressure, maximum wind speed ($V_{max}$) and the maximum wind speed radius ($R_{max}$); it was then applied to synthetic typhoons. The storm surges were calculated using the ADCIRC model, considering both tidal and synthetic typhoons using automated Perl script. The storm surges caused by the probabilistic synthetic typhoons appear similar to the recorded storm surges, therefore this proposed scheme can be applied to the storm surge simulations. Based on these results, extreme values were calculated using the Generalized Extreme Value (GEV) method, and as a result, the 100-year return period storm surge was found to be satisfactory compared with the calculated empirical simulation value. The method proposed in this study can be applied to estimate the frequency of storm surges in coastal areas.

Development of Evaluation Model for ITS Project using the Probabilistic Risk Analysis (확률적 위험도분석을 이용한 ITS사업의 경제성평가모형)

  • Lee, Yong-Taeck;Nam, Doo-Hee;Lim, Kang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.95-108
    • /
    • 2005
  • The purpose of this study is to develop the ITS evaluation model using the Probabilistic Risk Analysis (PRA) methodology and to demonstrate the goodness-of-fit of the large ITS projects through the comparative analysis between DEA and PRA model. The results of this study are summarized below. First, the evaluation mode] using PRA with Monte-Carlo Simulation(MCS) and Latin-Hypercube Sampling(LHS) is developed and applied to one of ITS projects initiated by local government. The risk factors are categorized with cost, benefit and social-economic factors. Then, PDF(Probability Density Function) parameters of these factors are estimated. The log-normal distribution, beta distribution and triangular distribution are well fitted with the market and delivered price. The triangular and uniform distributions are valid in benefit data from the simulation analysis based on the several deployment scenarios. Second, the decision making rules for the risk analysis of projects for cost and economic feasibility study are suggested. The developed PRA model is applied for the Daejeon metropolitan ITS model deployment project to validate the model. The results of cost analysis shows that Deterministic Project Cost(DPC), Deterministic Total Project Cost(DTPC) is the biased percentile values of CDF produced by PRA model and this project need Contingency Budget(CB) because these values are turned out to be less than Target Value(TV;85% value), Also, this project has high risk of DTPC and DPC because the coefficient of variation(C.V) of DTPC and DPC are 4 and 15 which are less than that of DTPC(19-28) and DPC(22-107) in construction and transportation projects. The results of economic analysis shows that total system and subsystem of this project is in type II, which means the project is economically feasible with high risk. Third, the goodness-of-fit of PRA model is verified by comparing the differences of the results between PRA and DEA model. The difference of evaluation indices is up to 68% in maximum. Because of this, the deployment priority of ITS subsystems are changed in each mode1. In results. ITS evaluation model using PRA considering the project risk with the probability distribution is superior to DEA. It makes proper decision making and the risk factors estimated by PRA model can be controlled by risk management program suggested in this paper. Further research not only to build the database of deployment data but also to develop the methodologies estimating the ITS effects with PRA model is needed to broaden the usage of PRA model for the evaluation of ITS projects.