Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2020.06.007

An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part I = generalisation  

Kim, Do Kyun (Marine Offshore and Subsea Technology Group, Newcastle University)
Wong, Eileen Wee Chin (Ocean & Ship Technology (OST) Research Group, Universiti Teknologi PETRONAS)
Cho, Nak-Kyun (Department of Manufacturing Systems and Design Engineering, SeoulTech)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.12, no.1, 2020 , pp. 657-666 More about this Journal
Abstract
A reliable and cost-effective technique for the development of corrosion damage model is introduced to predict nonlinear time-dependent corrosion wastage of steel structures. A detailed explanation on how to propose a generalised mathematical formulation of the corrosion model is investigated in this paper (Part I), and verification and application of the developed method are covered in the following paper (Part II) by adopting corrosion data of a ship's ballast tank structure. In this study, probabilistic approaches including statistical analysis were applied to select the best fit probability density function (PDF) for the measured corrosion data. The sub-parameters of selected PDF, e.g., the largest extreme value distribution consisting of scale, and shape parameters, can be formulated as a function of time using curve fitting method. The proposed technique to formulate the refined time-dependent corrosion wastage model (TDCWM) will be useful for engineers as it provides an easy and accurate prediction of the 1) starting time of corrosion, 2) remaining life of the structure, and 3) nonlinear corrosion damage amount over time. In addition, the obtained outcome can be utilised for the development of simplified engineering software shown in Appendix B.
Keywords
Corrosion modelling; Time-dependent; Non-linear corrosion; Aging; Engineering;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Mohd Hairil, M., Kim, D.K., Kim, D.W., Paik, J.K., 2014a. A time-variant corrosion wastage model for subsea gas pipelines. Ships Offshore Struct. 9 (2), 161-176.   DOI
2 Mohd Hairil, M., Paik, J.K., 2013. Investigation of the corrosion progress characteristics of offshore subsea oil well tubes. Corrosion Sci. 67, 130-141.   DOI
3 Mohd Hairil, M., Kim, D.W., Lee, B.J., Kim, D.K., Seo, J.K., Paik, J.K., 2014b. On the burst strength capacity of an aging subsea gas pipeline. J. Offshore Mech. Arctic Eng. 136 (4), 041402, 1-7.
4 Melchers, R.E., 2003a. Mathematical modelling of the diffusion controlled phase in marine immersion corrosion of mild steel. Corrosion Sci. 45 (5), 923-940.   DOI
5 Melchers, R.E., 2003b. Modeling of marine immersion corrosion for mild and low alloy steels - Part 1: phenomenological model. Corrosion 59 (4), 319-334.   DOI
6 Melchers, R.E., 2003c. Probabilistic model for marine corrosion of steel for structural reliability assessment. J. Struct. Eng. 129 (11), 1484-1493.   DOI
7 Melchers, R.E., 2008. Development of new applied models for steel corrosion in marine applications including shipping. Ships Offshore Struct. 3 (2), 135-144.   DOI
8 Meo, D.D., Oterkus, E., 2017. Finite element implementation of a peridynamic pitting corrosion damage model. Ocean Eng. 135, 76-83.   DOI
9 Abdussamie, N., Ojeda, R., Daboos, M., 2018. ANFIS method for ultimate strength prediction of unstiffened plates with pitting corrosion. Ships Offshore Struct. 13 (5), 540-550.   DOI
10 Akpa Jackson, G., 2013. Modeling of the corrosion rate of stainless steel in marine oil environment. ARPN J. Eng. Appl. Sci. 8 (8), 656-662.
11 Bai, Y., Yan, H.B., Cao, Y., Kim, Y.H., Yang, Y.Y., Jiang, H., 2016. Time-dependent reliability assessment of offshore jacket platforms. Ships Offshore Struct. 11 (6), 591-602.   DOI
12 Cheng, A., Chen, N.Z., 2017. Corrosion fatigue crack growth modelling for subsea pipeline steels. Ocean Eng. 142, 10-19.   DOI
13 Paik, J.K., Kim, D.K., 2012. Advanced method for the development of an empirical model to predict time-dependent corrosion wastage. Corrosion Sci. 63, 51-58.   DOI
14 Wood, M.H., Vetere Arellano, A.L., Van Wijk, L., 2013. Corrosion-related Accidents in Petroleum Refineries: Lessons Learned from Accidents in EU and OECD Countries (Report No. EUR 26331 EN). European Commission Joint Research Centre, Institute for the Protection and Security of the Citizen, Ispra, Italy.
15 Yang, H.Q., Zhang, Q., Tu, S.S., Wang, Y., Huang, Y., 2016. A study on time-variant corrosion model for immersed steel plate elements considering the effect of mechanical stress. Ocean Eng. 125, 134-146.   DOI
16 Zhang, Y., Huang, Y., Zhang, Q., Liu, G., 2016. Ultimate strength of hull structural plate with pitting corrosion damnification under combined loading. Ocean Eng. 116, 273-285.   DOI
17 Paik, J.K., Kim, S.K., Lee, S.K., 1998. Probabilistic corrosion rate estimation model for longitudinal strength members of bulk carriers. Ocean Eng. 25 (10), 837-860.   DOI
18 Paik, J.K., Lee, J.M., Hwang, J.S., Park, Y.I., 2003a. A time-dependent corrosion wastage model for the structures of single- and double-hull tankers and FSOs and FPSOs. Mar. Technol. 40 (3), 201-217.
19 Paik, J.K., Melchers, R.E., 2008. Condition Assessment of Aged Structures. CRC Press, New York, USA.
20 Paik, J.K., Thayamballi, A.K., 2003. Ultimate Limit State Design of Steel-Plated Structures. John Wiley & Sons, Chichester, UK.
21 Evans, U.R., 1960. The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications. Edward Arnold Publishers Ltd., London, UK.
22 Chernov, B.B., 1990. Predicting the corrosion of steels in seawater from its physiochemical characteristics. Protect. Met. 26 (2), 238-241.
23 Chernov, B.B., Ponomarenko, S.A., 1991. Physiochemical modelling of metal corrosion in seawater. Protect. Met. 27 (5), 612-615.
24 Commercial, Specialised Diving LTD, 2018. Are Your Underwater Structures in a Good Condition? - UT Meter, Commercial Blog. Ferndown, UK. https://commercialandspecialiseddiving.wordpress.com/2018/02/28/are-yourunderwater-structures-in-a-good-condition-ut-meter/.
25 Cui, J., Wang, D., Ma, N., 2019. Case studies on the probabilistic characteristics of ultimate strength of stiffened panels with uniform and non-uniform localized corrosion subjected to uniaxial and biaxial thrust. Int. J. Naval Archit. Ocean Eng. 11 (1), 97-118.   DOI
26 Energy Global News, 2020. 12 December 1999 - Tanker Erika Broken in Two in the Bay of Biscaye. Energy Global News. http://www.energyglobalnews.com/12-december-1999-tanker-erika-broke-in-two-in-the-bay-of-biscaye.
27 Georgiadis, D., Samuelides, M., 2019. A methodology for the reassessment of hullgirder ultimate strength of a VLCC tanker based on corrosion model updating. Ships Offshore Struct. 14 (Suppl. 1), 270-280.   DOI
28 Gucuyen, E., Erdem, R.T., 2014. Corrosion effects on structural behaviour of jacket type offshore structures. Gradevinar 66 (11), 981-986.
29 Guedes Soares, C., Garbatov, Y., Zayed, A., Wang, G., 2005. Non-linear corrosion model for immersed steel plates accounting for environmental factors. Transactions of the SNAME 111, 194-211.
30 Paik, J.K., Thayamballi, A.K., 2007. Ship-shaped Offshore Installations. Cambridge University Press, Cambridge, UK.
31 Rahbar-Ranji, A., Niamir, N., Zarookian, A., 2015. Ultimate strength of stiffened plates with pitting corrosion. Int. J. Naval Archit. Ocean Eng. 7 (3), 509-525.   DOI
32 Paik, J.K., Thayamballi, A.K., Park, Y.I., Hwang, J.S., 2003b. A time-dependent corrosion wastage model for bulk carrier structures. Int. J. Marit. Eng. 145 (A2), 61-87.
33 Paik, J.K., Thayamballi, A.K., Park, Y.I., Hwang, J.S., 2004. A time-dependent corrosion wastage model for seawater ballast tank structures of ships. Corrosion Sci. 46 (2), 471-486.   DOI
34 Qin, S., Cui, W., 2003. Effect of corrosion models on the time-dependent reliability of steel plated structures. Mar. Struct. 16 (1), 15-34.   DOI
35 Rajput, A., Park, J.H., Noh, S.H., Paik, J.K., 2019. Fresh and sea water immersion corrosion testing on marine structural steel at low temperature. Ships Offshore Struct. in-press https://www.tandfonline.com/doi/full/10.1080/17445302.2019.1664128.
36 Ringsberg, J.W., Li, Z., Johnson, E., Kuznecovs, A., Shafieisabet, R., 2018. Reduction in ultimate strength capacity of corroded ships involved in collision accidents. Ships Offshore Struct. 13 (Suppl. 1), 155-166.   DOI
37 Tomashov, N.D., 1966. Theory of Corrosion and Protection of Metals: the Science of Corrosion. Macmillan, New York, USA.
38 Wang, G., Lee, A.K., Ivanov, L., Lynch, T.J., Serratella, C., Basu, R., 2008. A statistical investigation of time-variant hull girder strength of aging ships and coating life. Mar. Struct. 21 (2-3), 240-256.   DOI
39 Wikipedia, 2018. Goodness of Fit. https://en.wikipedia.org/wiki/Goodness_of_fit.
40 Ivanov, L.D., Chen, N.Z., 2017. On the presentation of ship's hull girder section modulus in probabilistic formats. Ships Offshore Struct. 12 (8), 1024-1036.   DOI
41 Ivosevic, S., Mestrovic, R., Kovac, N., 2019. Probabilistic estimates of corrosion rate of fuel tank structures of aging bulk carriers. Int. J. Naval Archit. Ocean Eng. 11 (1), 165-177.   DOI
42 Kim, D.K., Kim, H.B., Zhang, X.M., Li, C.G., Paik, J.K., 2014b. Ultimate strength performance of tankers associated with industry corrosion addition practices. Int. J. Naval Archit. Ocean Eng. 6 (3), 507-528.   DOI
43 Joo, M., Doh, J.H., Lee, J.S., 2018. Determination of the best distribution and effective interval using statistical characterization of uncertain variables. J. Comput. Design Eng. 5 (3), 358-367.   DOI
44 Kim, D.K., Kim, S.J., Kim, H.B., Zhang, X.M., Li, C.G., Paik, J.K., 2015. Ultimate strength performance of bulk carriers with various corrosion additions. Ships Offshore Struct. 10 (1), 59-78.   DOI
45 Kim, D.K., Kim, B.J., Seo, J.K., Kim, H.B., Zhang, X.M., Paik, J.K., 2014a. Time-dependent corrosion damage on the development of residual strength - grounding damage index diagram. Ocean Eng. 76, 163-171.   DOI
46 Kim, D.K., Park, D.K., Kim, H.B., Seo, J.K., Paik, J.K., Kim, B.J., Kim, M.S., 2012a. The necessity of applying the common corrosion addition rule to container ships in terms of ultimate longitudinal strength. Ocean Eng. 49, 43-55.   DOI
47 Kim, D.K., Zalaya, M.A., Choi, H.S., Mohd Hairil, M., Park, K.S., 2017. Safety assessment of corroded jacket platform considering decommissioning event. Int. J. Automot. Mech. Eng. 14 (3), 4462-4485.   DOI
48 Wong, E.W.C., Kim, D.K., 2018. A simplified method to predict fatigue damage of TTR subjected to short-term VIV using artificial neural network. Adv. Eng. Software 126, 100-109.   DOI
49 Kim, D.K., Park, D.K., Kim, J.H., Kim, S.J., Kim, B.J., Seo, J.K., Paik, J.K., 2012b. Effect of corrosion on the ultimate strength of double hull oil tankers - Part I: stiffened panels. Struct. Eng. Mech. 42 (4), 507-530.   DOI
50 Kim, D.K., Park, D.K., Park, D.H., Kim, H.B., Kim, B.J., Seo, J.K., Paik, J.K., 2012c. Effect of corrosion on the ultimate strength of double hull oil tankers - Part II: hull girders. Struct. Eng. Mech. 42 (4), 531-549.   DOI
51 Kim, D.K., Lim, H.L., Cho, N.K., 2020. An advanced technique to predict timedependent corrosion damage of onshore, offshore, nearshore and ship structures: Part II = application to the ship's ballast tank. Int. J. Naval Archit. Ocean Eng. https://doi.org/10.1016/j.ijnaoe.2020.07.002. In press.   DOI
52 Kim, D.K., Lim, H.L., Yu, S.Y., 2019a. Ultimate strength prediction of T-bar stiffened panel under longitudinal compression by data processing: a refined empirical formulation. Ocean Eng. 192, 106522.   DOI
53 Kim, D.K., Wong, E.W.C., Lee, E.B., Yu, S.Y., Kim, Y.T., 2019b. A method for empirical formulation of current profile. Ships Offshore Struct. 14 (2), 176-192.   DOI
54 Lam, C., 2015. Statistical Analyses of Historical Pipeline Incident Data with Application to the Risk Assessment of Onshore Natural Gas Transmission Pipelines. MSc Dissertation, The University of Western Ontario, London, Canada.