• 제목/요약/키워드: Pro-inflammatory mediators

검색결과 289건 처리시간 0.02초

Methanolic Extract of Asterina pectinifera inhibits LPS-Induced Inflammatory Mediators in Murine Macrophage

  • Jo, Wol-Soon;Choi, Yoo-Jin;Kim, Hyoun-Ji;Nam, Byung-Hyouk;Lee, Gye-An;Seo, Su-Yeong;Lee, Sang-Wha;Jeong, Min-Ho
    • Toxicological Research
    • /
    • 제26권1호
    • /
    • pp.37-46
    • /
    • 2010
  • This study aimed to elucidate anti-inflammatory activities from extracts of Asterina pectinifera on nitric oxide (NO) production, TNF-${\alpha}$ and IL-6 release in lipopolysaccharide (LPS)-stimulated murine macrophage cell, RAW264.7. We prepared the methanolic extracts (60-MAP, 70-MAP, 80-MAP and 90-MAP), aqueous extract (W-AP) and functional bioactive compound fraction (He-AP and EA-AP) from Asterina pectinifera according to extract method. The 60-MAP, 70-MAP, 80-MAP, 90-MAP and W-AP were significantly suppressed LPS-induced production NO, TNF-${\alpha}$ and IL-6 secretion in a concentration-dependent manner (P < 0.05). Especially, 80-MAP by extracted 80% methanol had the strongest activity in reduction of inflammatory mediators among these extracts. Indeed, to identify active fraction, which contained potential bioactive compounds, from 80-MAP of Asterina pectinifera, we tested anti-inflammatory activity of the He-AP or the EA-AP. The He-AP was next extracted from 80-MAP and the EA-AP were extracted from the other methanol layer except the He-AP. The EA-AP demonstrated a strong anti-inflammatory effect through its ability to reduce NO production and it also inhibited the production of proinflammatory cytokines such as IL-6 and TNF-${\alpha}$ at low concentration. These results suggested that the methanolic extract from Asterina pectinifera had the potential inhibitory effects on the production of these inflammatory mediators.

WIN-34B May Have Analgesic and Anti-Inflammatory Effects by Reducing the Production of Pro-Inflammatory Mediators in Cells via Inhibition of IκB Signaling Pathways

  • Kim, Kyoung-Soo;Choi, Hyun-Mi;Yang, Hyung-In;Yoo, Myung-Chul
    • Biomolecules & Therapeutics
    • /
    • 제20권1호
    • /
    • pp.50-56
    • /
    • 2012
  • WIN-34B showed analgesic and anti-inflammatory effects in various animal models of pain and osteoarthritis. However, the molecular mechanism by which WIN-34B inhibits pain and inflammation in vivo remains to be elucidated. We investigated the molecular mechanisms of the actions of WIN-34B using various in vitro models using fibroblast-like synoviocytes from patients with rheumatoid arthritis (RA FLSs), RAW264.7 cells and peritoneal macrophages. WIN-34B inhibited the level of IL-6, $PGE_2$, and MMP-13 in IL-$1{\beta}$-stimulated RA FLSs in a dose-dependent manner. The mRNA levels were also inhibited by WIN-34B. The level of $PGE_2$, NO, IL-$1{\beta}$, and TNF-${\alpha}$ were inhibited by WIN-34B at different concentrations in LPS-stimulated RAW264.7 cells. The production of NO and $PGE_2$ was inhibited by WIN-34B in a dose-dependent manner in LPS-stimulated peritoneal macrophages. All of these effects were comparable to the positive control, celecoxib or indomethacin. I${\kappa}B$B signaling pathways were inhibited by WIN-34B, and the migration of NF-${\kappa}B$ into the nucleus was inhibited, which is consistent with the degradation of $I{\kappa}B-{\alpha}$. Taken together, the results suggest that WIN-34B has potential as a therapeutic drug to reduce pain and inflammation by inhibiting the production of pro-inflammatory mediators.

Immunomodulatory Activity of Betulinic Acid by Producing Pro-Inflammatory Cytokines and Activation of Macrophages

  • Yun, Yun-Ha;Han, Shin-Ha;Park, Eun-Jung;Yim, Don-Sool;Lee, Sook-Yeon;Lee, Chong-kil;Cho, Kyung_Hae;Kim, Kyung_Jae
    • Archives of Pharmacal Research
    • /
    • 제26권12호
    • /
    • pp.1087-1095
    • /
    • 2003
  • Betulinic acid (BA), a pentacyclic triterpene isolated from Lycopus lucidus, has been reported to be a selective inducer of apoptosis in various human cancer and shown anti-inflammatory and immunomodulatory properties. We postulated that BA modulates the immunomodulatory properties at least two groups of protein mediators of inflammation, interlukin-1$\beta$ (IL-1$\beta$) and the tumor necrosis factor- $\alpha$ (TNF-$\alpha$) on the basis of the critical role of the monocytes and tissue macrophages in inflammatory and immune responses. TNF-$\alpha$ and IL-1$\beta$ were produced by BA in a dose dependent manner at concentration of 0.625 and 10 $\mu$g/mL. The production of NO associated with iNOS was inhibited when treated with LPS at the concentration of 2.5 to 20 $\mu$g/mL of BA whereas COX-2 expression was decreased at 2.5 to 20 $\mu$g/mL. These modulations of inflammatory mediators were examined in LPS-stimulated RAW 264.7 cells and peritoneal macrophages. The morphology of macrophage was also examined and enhanced surface CD 40 molecule was expressed when treated BA at 0.625∼5 $\mu$g/mL with or without LPS. Furthermore, BA (20 $\mu$g/mL) enhanced apoptosis by producing DNA ladder in the RAW 264.7 cells. Our results indicated that BA induced activation of macrophage and pro-inflammatory cytokines. This may provide a molecular basis for the ability of BA to mediate macrophage, suppress inflammation, and modulate the immune response.

Artemisia fukudo essential oil attenuates LPS-induced inflammation by suppressing NF-${\kappa}B$ and MAPK activation in RAW 264.7 cells

  • Yoon, Weon-Jong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2010년도 정기총회 및 추계학술발표회
    • /
    • pp.13-13
    • /
    • 2010
  • In the present study, the chemical constituents of Artemisia fukudo essential oil (AFE) were investigated using GC-MS. The major constituents were ${\alpha}$-thujone (40.28%), ${\beta}$-thujone (12.69%), camphor (6.95%) and caryophyllene (6.01%). We also examined the effects of AFE on the production of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-IL-$1{\beta}$ (IL-$1{\beta}$), and IL-6 in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Western blotting and RT-PCR analyses indicated that AFE has potent dose-dependent inhibitory effects on pro-inflammatory cytokines and mediators. We investigated the mechanism by which AFE inhibits NO and $PGE_2$ by examining the level of nuclear factor-${\kappa}B$ (NF-${\kappa}B$: p50 and p65) activation within the mitogen-activated protein kinase (MAPK: ERK, JNK and p38) pathway, which is an inflammation induced signal pathway in RAW 264.7 cells. AFE inhibited LPS-induced ERK, JNK and p38 phosphorylation. Furthermore, AFE inhibited the LPS-induced phosphorylation and degradation of $I{\kappa}B-{\alpha}$, which is required for the nuclear translocations of the p50 and p65 NF-${\kappa}B$ subunits in RAW 264.7 cells. Our results suggest that AFE might exert an anti-inflammatory effect by inhibiting the expression of pro-inflammatory cytokines. Such an effect is mediated by a blocking of NF-${\kappa}B$ activation which consequently inhibits the generation of inflammatory mediators in RAW 264.7 cells. AFE may be useful for treating inflammatory diseases.

  • PDF

Anti-inflammatory effect of Arctium minus on LPS-stimulated RAW 264.7 cells

  • Yang, Hye-Ji;Jang, Min-Hye;Kang, Yoon Joong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.115-115
    • /
    • 2019
  • Arctium minus (AM), commonly known as lesser burdock, is a dried fruit (seed) of Aructium lappa L. that belong to Asteraceae. It has been used traditionally as herbal medicine because of its anti-inflammatory effects, and it has been applied to treat various diseases like allergies, skin aging, hyperlipidemia and urinary stone. In this study, we investigated the inhibitory effects of AM on the production of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Pre-treatment of the RAW 264.7 cells with AM considerably inhibited and reduced production of Nitric Oxide (NO) and pro-inflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and also shows suppression of nuclear factor-kappa B (NF-${\kappa}B$) translocation. In addition, AM treatment considerably reduced phosphorylation of mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW 264.7 cells. Our results indicate that the AM has potential to inhibit inflammation through suppressing production of inflammatory mediators via both the NF-${\kappa}B$ and MAPK signaling pathway. We therefore suggest that AM might be effective therapeutics for the treatment of various inflammatory diseases.

  • PDF

The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells

  • Kwon, Seung-Hwan;Ma, Shi-Xun;Hwang, Ji-Young;Ko, Yong-Hyun;Seo, Ji-Yeon;Lee, Bo-Ram;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • 제24권3호
    • /
    • pp.268-282
    • /
    • 2016
  • In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase $kinase-3{\beta}$ ($GSK-3{\beta}$), and their downstream transcription factor, nuclear factor-kappa B ($NF-{\kappa}B$). EUE also blocked the nuclear translocation of $NF-{\kappa}B$ and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and $PGE_2$ production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and $GSK-3{\beta}$, consequently suppressing $NF-{\kappa}B$ activation and inducing Nrf2-dependent HO-1 activation.

Lysate of Probiotic Lactobacillus plantarum K8 Modulate the Mucosal Inflammatory System in Dextran Sulfate Sodium-induced Colitic Rats

  • Ahn, Young-Sook;Park, Min Young;Shin, Jae-Ho;Kim, Ji Yeon;Kwon, Oran
    • 한국축산식품학회지
    • /
    • 제34권6호
    • /
    • pp.829-835
    • /
    • 2014
  • Inflammatory bowel disease (IBD) is caused by dysregulation of colon mucosal immunity and mucosal epithelial barrier function. Recent studies have reported that lipoteichoic acid (LTA) from Lactobacillus plantarum K8 reduces excessive production of pro-inflammatory cytokine. In this study, we investigated the preventive effects of lysate of Lb. plantarum K8 in dextran sulfate sodium (DSS)-induced colitis. Male Sprague-Dawley rats were orally pretreated with lysate of Lb. plantarum K8 (low dose or high dose) or live Lb. plantarum K8 prior to the induction of colitis using 4% DSS. Disease progression was monitored by assessment of disease activity index (DAI). Histological changes of colonic tissues were evaluated by hematoxylin and eosin (HE) staining. Tumor necrosis factor-alpha (TNF-${\alpha}$), interleukin-6 (IL-6) levels were measured using enzyme-linked immunosorbent assay (ELISA). The colon mRNA expressions of TNF-${\alpha}$, IL-6, and toll like receptor-2 (TLR-2) were examined by quantitative real-time-transcription polymerase chain reaction (qPCR). Lysate of Lb. plantarum K8 suppressed colon shortening, edema, mucosal damage, and the loss of DSS-induced crypts. The groups that received lysate of Lb. plantarum K8 exhibited significantly decreased levels of the pro-inflammatory cytokines TNF-${\alpha}$ and IL-6 in the colon. Interestingly, colonic expression of toll like receptor-2 mRNA in the high-dose lysate of Lb. plantarum K8 group increased significantly. Our study demonstrates the protective effects of oral lysate of Lb. plantarum K8 administration on DSS-induced colitis via the modulation of pro-inflammatory mediators of the mucosal immune system.

Cordycepin Suppresses Expression of Diabetes Regulating Genes by Inhibition of Lipopolysaccharide-induced Inflammation in Macrophages

  • Shin, Seul-Mee;Lee, Sung-Won;Kwon, Jeong-Hak;Moon, Sun-Hee;Lee, Seung-Jeong;Lee, Chong-Kil;Cho, Kyung-Hae;Ha, Nam-Joo;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • 제9권3호
    • /
    • pp.98-105
    • /
    • 2009
  • Background: It has been recently noticed that type 2 diabetes (T2D), one of the most common metabolic diseases, causes a chronic low-grade inflammation and activation of the innate immune system that are closely involved in the pathogenesis of T2D. Cordyceps militaris, a traditional medicinal mushroom, produces a component compound, cordycepin (3'-deoxyadenosine). Cordycepin has been known to have many pharmacological activities including immunological stimulating, anti-cancer, and anti-infection activities. The molecular mechanisms of cordycepin in T2D are not clear. In the present study, we tested the role of cordycepin on the anti-diabetic effect and anti-inflammatory cascades in LPS-stimulated RAW 264.7 cells. Methods: We confirmed the levels of diabetes regulating genes mRNA and protein of cytokines through RT-PCR and western blot analysis and followed by FACS analysis for the surface molecules. Results: Cordycepin inhibited the production of NO and pro-inflammatory cytokines such as IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ in LPS-activated macrophages via suppressing protein expression of pro-inflammatory mediators. T2D regulating genes such as $11{\beta}$-HSD1 and PPAR${\gamma}$ were decreased as well as expression of co-stimulatory molecules such as ICAM-1 and B7-1/-2 were also decreased with the increment of its concentration. In accordance with suppressed pro-inflammatory cytokine production lead to inhibition of diabetic regulating genes in activated macrophages. Cordycepin suppressed NF-${\kappa}B$ activation in LPS-activated macrophages. Conclusion: Based on these observations, cordycepin suppressed T2D regulating genes through the inactivation of NF-${\kappa}B$ dependent inflammatory responses and suggesting that cordycepin will provide potential use as an immunomodulatory agent for treating immunological diseases.

Human Umbilical Vein Endothelial Cells에서 녹차씨껍질 에틸아세테이트 추출물의 세포부착물질 및 염증매개인자 생성 억제효과 (Suppressive Effects of Ethyl Acetate Fraction from Green Tea Seed Coats on the Production of Cell Adhesion Molecules and Inflammatory Mediators in Human Umbilical Vein Endothelial Cells)

  • 노경희;김종경;송영선
    • 한국식품영양과학회지
    • /
    • 제40권5호
    • /
    • pp.635-641
    • /
    • 2011
  • 본 연구는 TNF-${\alpha}$로 자극된 HUVEC에서 녹차씨껍질 EtOAC 추출물이 초기 동맥경화 과정에 중요한 역할을 하는 염증매개인자와 세포부착물질에 미치는 영향을 분석하였다. 녹차씨껍질 EtOAC 추출물의 NO 생성능은 TNF-${\alpha}$만을 처리한 control군에 비해 증가시키는 것을 알 수 있었다. $100{\mu}g$/mL 농도에서는 녹차씨껍질 EtOAC 추출물은 세포독성을 보이지 않았으며 염증매개인자인 TNF-${\alpha}$ 수준 및 세포부착물질인 VCAM-1과 MCP-1의 생성을 억제하였다. 뿐만아니라, 녹차씨껍질 EtOAC 추출물은 총 항산화능은 증가되는 경향을 보였다. 이상의 결과에서, 녹차씨껍질 EtOAC 추출물은 HUVEC에서 TNF-${\alpha}$로 인한 총 항산화능의 수준을 향상시켜 염증생성인자인 TNF-${\alpha}$ 수준 및 세포부착물질인 VCAM-1과 MCP-1의 생성을 억제하여 동맥경화 초기반응을 억제하는데 기여할 것으로 사료된다.

Avicularin Inhibits Lipopolysaccharide-Induced Inflammatory Response by Suppressing ERK Phosphorylation in RAW 264.7 Macrophages

  • Vo, Van Anh;Lee, Jae-Won;Chang, Ji-Eun;Kim, Ji-Young;Kim, Nam-Ho;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo;Kwon, Yong-Soo
    • Biomolecules & Therapeutics
    • /
    • 제20권6호
    • /
    • pp.532-537
    • /
    • 2012
  • Avicularin, quercetin-3-${\alpha}$-L-arabinofuranoside, has been reported to possess diverse pharmacological properties such as anti-inflammatory and anti-infectious effects. However, the underlying mechanism by which avicularin exerts its anti-inflammatory activity has not been clearly demonstrated. This study aimed to elucidate the anti-inflammatory mechanism of avicularin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Avicularin significantly inhibited LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$ and the protein levels of iNOS and COX-2, which are responsible for the production of NO and $PGE_2$, respectively. Avicularin also suppressed LPS-induced overproduction of pro-inflammatory cytokine IL-$1{\beta}$. Furthermore, avicularin significantly suppressed LPS-induced degradation of $I{\kappa}B$, which retains NF-${\kappa}B$ in the cytoplasm, consequently inhibiting the transcription of pro-inflammatory genes by NF-${\kappa}B$ in the nucleus. To understand the underlying signaling mechanism of anti-inflammatory activity of avicularin, involvement of multiple kinases was examined. Avicularin significantly attenuated LPS-induced activation of ERK signaling pathway in a concentration-dependent manner. Taken together, the present study clearly demonstrates that avicularin exhibits anti-inflammatory activity through the suppression of ERK signaling pathway in LPS-stimulated RAW 264.7 macrophage cells.