Browse > Article

Immunomodulatory Activity of Betulinic Acid by Producing Pro-Inflammatory Cytokines and Activation of Macrophages  

Yun, Yun-Ha (Department of Pharmacy, Sahmyook University)
Han, Shin-Ha (Department of Pharmacy, Sahmyook University)
Park, Eun-Jung (Department of Pharmacy, Sahmyook University)
Yim, Don-Sool (Department of Pharmacy, Sahmyook University)
Lee, Sook-Yeon (Department of Pharmacy, Sahmyook University)
Lee, Chong-kil (College of Pharmacy, Chung-buk National University)
Cho, Kyung_Hae (Department of Biology, Seoul Women's University)
Kim, Kyung_Jae (Department of Pharmacy, Sahmyook University)
Publication Information
Archives of Pharmacal Research / v.26, no.12, 2003 , pp. 1087-1095 More about this Journal
Abstract
Betulinic acid (BA), a pentacyclic triterpene isolated from Lycopus lucidus, has been reported to be a selective inducer of apoptosis in various human cancer and shown anti-inflammatory and immunomodulatory properties. We postulated that BA modulates the immunomodulatory properties at least two groups of protein mediators of inflammation, interlukin-1$\beta$ (IL-1$\beta$) and the tumor necrosis factor- $\alpha$ (TNF-$\alpha$) on the basis of the critical role of the monocytes and tissue macrophages in inflammatory and immune responses. TNF-$\alpha$ and IL-1$\beta$ were produced by BA in a dose dependent manner at concentration of 0.625 and 10 $\mu$g/mL. The production of NO associated with iNOS was inhibited when treated with LPS at the concentration of 2.5 to 20 $\mu$g/mL of BA whereas COX-2 expression was decreased at 2.5 to 20 $\mu$g/mL. These modulations of inflammatory mediators were examined in LPS-stimulated RAW 264.7 cells and peritoneal macrophages. The morphology of macrophage was also examined and enhanced surface CD 40 molecule was expressed when treated BA at 0.625∼5 $\mu$g/mL with or without LPS. Furthermore, BA (20 $\mu$g/mL) enhanced apoptosis by producing DNA ladder in the RAW 264.7 cells. Our results indicated that BA induced activation of macrophage and pro-inflammatory cytokines. This may provide a molecular basis for the ability of BA to mediate macrophage, suppress inflammation, and modulate the immune response.
Keywords
Lycopus lucidus; Betulinic acid; Macrophage; $TNF-\alpha$; $IL-1{\beta}$;
Citations & Related Records

Times Cited By Web Of Science : 20  (Related Records In Web of Science)
Times Cited By SCOPUS : 25
연도 인용수 순위
1 Fujioka, T., Kashiwada, Y., Kilkuskie, R. E., Cosentino, L. M., Ballas, L. M., Jiang, J. B., Janzen, W. P., Chen, I. S., and Lee, K. H., Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J. Natural Products, 57, 243-247 (1994)   DOI   ScienceOn
2 Fulda, S., Scaffidi, C., Susin, S. A., Krammer, P. H., Kroemer, G., Peter, M. E., and Debatin, K. M., Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J. Biological Chemistry, 18, 33942-33948 (1998)
3 Komori, A., Yatsunami, J., Suganuma, M., Okabe, S., Abe, S., Sakai, A., Sasaki, K., and Fujiki, H., Tumor necrosis factor acts as a tumor promoter in BALB/3T3cell transformation. Cancer Research, 53, 1982-1985 (1993)   PUBMED
4 Kronckes, K. D., Fehsel, K., and Kolb-Bachofen, V., Nitric oxide: cytotoxicity versus cytoprotection: how, why, when, and where? Nitric Oxide, 1, 107-120 (1997)   DOI   ScienceOn
5 Krutmann, J. and Elmets, C. A., Recent studies on mechanisms in photoimmunology. Photochemistry and Photobiology, 48, 787-798 (1988)   DOI   ScienceOn
6 Noel, R. R., Everly, C. M., John, L. F., Herman, F., and Gerald, M. P., The Manual of Clinical Laboratory Immunology, Herman Friedman, U.S.A., pp. 233-235 (1991)
7 Pisha, E., Chai, H., Lee, I. S., Chagwedera, T. E., Farnsworth, N. R., Cordell, G. A., Beecher, C. W., Fong, H. H., Kinghorn, A. D., Brown, D. M., Wani, M. C., Wall, M. E., Hieken, T. J., Das Gupta, T. K., and Pezzuto, J. M., Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nature Medicine, 1, 1046-1051 (1995)   DOI   ScienceOn
8 Schmidt, M. L., Kuzmanoff, K. L., Ling-Indeck, L., and Pezzuto, J. M., Betulinic acid induces apoptosis in human neuroblastoma cell lines. European J. Cancer, 33, 2007-2010 (1997)   DOI   ScienceOn
9 Suganuma, M., Okabe, S., Sueoka, E., Iida, N., Komori, A., Kim, S. J., and Fujiki, H., A new process of cancer prevention mediated through inhibition of tumor necrosis factor alpha expression. Cancer Research, 56, 3711-3715 (1996)   PUBMED
10 Suganuma, M., Okabe, S., Marino, M. W., Sakai, A., Sueoka, E., and Fujiki, H., Essential role of tumor necrosis factor alpha (TNF-alpha) in tumor promotion as revealed by TNF-alpha- deficient mice. Cancer Research, 59, 4516-4518 (1999)   PUBMED
11 Suganuma, M., Okabe, S., Kurusu, Iida M., Ohshima, S., Sacki, Y., Kishimoto, T., and Fujiki, H., Discrete roles of cytokines, TNF-$\alpha$, IL-1, IL-6 in tumor promotion and cell transformation. International J. Oncology, 20, 131-136 (2002)   PUBMED
12 Otto, J. C., DeWitt, D. L., and Smith, W. L., N-Glycosylation of prostaglandin endoperoxide synthase-1 and 2 and their orientations in the endoplasmic reticulum. J. Biological Chemistry, 68, 18234-18242 (1993)
13 Giri, D. K. and Aggarwal, B. B., Constitutive activation of NF-kappa B causes resistance to apoptosis in human cutaneous T cell lymphoma HuT-78 cells. Autocrine role of tumor necrosis factor and reactive oxygen intermediates. J. Biological Chemistry, 273, 14008-14014 (1998)   DOI   ScienceOn
14 Hafner, M., Orosz, P., Kruger, A., and Mannel, D. N., TNF promotes metastasis by impairing natural killer cell activity. International J. Cancer, 66, 388-392 (1996)   DOI
15 Ahmad, N., Chen, L. C., Gordon, M. A., Laskin, J. D., and Laskin, D. L. Regulation of cycloxygenase-2 by nitric oxide in activated hepatic macrophages during acute endotoxemia. J. Leukocyte Biology , 71, 1005-1011 (2002)   PUBMED
16 Stuehr, D. J. and Nathan, C. F., Nitric oxide, a macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Experimental Medicine, 169, 1543-1555 (1989)   DOI   ScienceOn
17 Seiber, K., Zhang, Y., Leahy, K., Hauser, S., Masferrer, J., Perkins, W., Lee, L., and Isakson, P., Pharmacological and biochemical demonstration of the role of cycloxygenase-2 in inflammation and pain. Proceedings of the National Academy of Sciences of the United States of America, 91, 12013-12017 (1994)   DOI   ScienceOn
18 Yasukawa, K., Takido, M., Matsumoto, T., Takeuchi, M., and Nakagawa, S., Sterol and triterpene derivatives from plants inhibit the effects of a tumor promoter, and sitosterol and betulinic acid inhibit tumor formation in mouse skin two-stage carcinogenesis. Oncology, 48, 72-76 (1991)   DOI   ScienceOn
19 Cho, J. Y., Park, J., Yoo, E. S., Baik, K. U., and Park, M. H., Effect of ginseng saponin on tumor necrosis factor-$\alpha$ production and T cell proliferation. Yakhak Hoeji, 43, 296-301 (1998)
20 Djeu, J. Y., Blanchard, D. K., Richards, A. L., and Friedman, H., Tumor necrosis factor induction by Candida albicans from human natural killer cells and monocytes. J. Immunology, 141, 4047-4052 (1988)
21 Recio, M. C., Giner, R. M., Manez, S., Gueho, J., Julien, H. R., Hostettmann, K., and Rios, J. L., Investigations on the steroidal anti-inflammatory activity of triterpenoids from Diospyros leucomelas. Planta Medica, 81, 9-14 (1995)
22 Amott, C. H., Scott, K. A., Moore, R. J., Hewer, A., Phillips, D. H., Parker, P., Balkwill, F. R., and Owens, D. M., Tumor necrosis factor-alpha mediates tumor promotion via a PKC alpha- and AP-1-dependent pathway. Oncogene, 21, 4728-4738 (2002)   DOI   ScienceOn
23 Roberts, L. K., Smith, D. R., Seilstad, K. H., and Jun, B. D., Photoimmunology: the mechanisms involved in immune modulation by UV radiation. J. Photochemistry Photobiology, 2, 149-177 (1988)   DOI   ScienceOn
24 Bringmann, G., Saeb, W., Assi, L. A., Francois, G., Sankara Narayanan, A. S., Peters, K., and Peters, E. M., Betulinic acid: isolation from Triphyophyllum peltatum and Ancistrocladus heyneanus, antimalarial activity, and crystal structure of the benzyl ester. Planta Medica, 63, 255-257 (1997)   DOI   ScienceOn
25 Mukherjee, P. K., Saha, K., Das, J., Pal, M., and Saha, B. P., Studies on the anti-inflammatory activity of rhizomes of Nelumbo nucifera. Planta Medica, 63, 367-369 (1997)   DOI   ScienceOn
26 Choi, Y. E., Ahn, H., and Ryu, J., Polyacetylenes from Angelica gigas and their inhibitory activity on nitric oxide synthesis in activated macrophages. Biological and Pharmaceutical Bulletin, 23, 884-886 (2000)   DOI   ScienceOn
27 Hehlgans, T., Stoelcker, B., Stopfer, P., Muller, P., Cernaianu, G., Guba, M., Steinbauer, M., Nedospasov, S. A., Pfeffer, K. and Mannel, D. N., Lymphotoxin-beta receptor immune interaction promotes tumor growth by inducing angiogenesis. Cancer Research, 62, 4034-4040 (2002)   PUBMED
28 Moore, R. J., Owens, D. M., Stamp, G., Arnott, C., Burke, F., East, N., Holdsworth, H., Turner, L., Rollins, B., Pasparakis, M., Kollias, G., and Balkwill F. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nature medicine, 5, 828-831 (1999)   DOI   ScienceOn
29 Orosz, P., Echtenacher, B., Falk, W., Ruschoff, J., Weber, D., and Mannel, D. N., Enhancement of experimental metastasis by tumor necrosis factor. J. Experimental Medicine, 177, 1391-1398 (1993)   DOI   ScienceOn
30 Orosz, P., Kruger, A., Hubbe, M., Ruschoff, J., Von Hoegen, P., and Mannel, D. N., Promotion of experimental liver metastasis by tumor necrosis factor. International J. Cancer, 60, 867-871 (1995)   DOI   ScienceOn
31 Fulda, S., Friesen, C., Los, M., Scaffidi, C., Mier, W., Benedict, M., Nunez, G., Krammer, P. H., Peter, M. E., and Debatin, K. M., Betulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer Research, 57, 4956-4964 (1997)   PUBMED
32 Aggarwal, B. B., Schwarz, L., Hogan, M. E., and Rando, R. F., Triple helix forming oligodeoxyribonucleotides targeted to the human tumor necrosis factor (TNF) gene inhibit TNF production and block the TNF-dependent growth of human glioblastoma tumor cells. Cancer research, 56, 5156-5164 (1996)   PUBMED
33 Hashimoto, F., Kashiwada, Y., Cosentin, L. M., Chen, C. H., Garrett, P.E., and Lee K.H. Bioorganic & Medicinal Chemistry, 5, 2133-2143 (1997)   DOI   ScienceOn
34 Moncada, S., Palmer, R. M., and Higgs, E. A., Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacological Reviews, 43, 109-142 (1991)   PUBMED
35 Charles, A. J., Paul, T., and Mark, W., Immunobiology, The immune system in health and disease, Current Biology Publications, London, UK, pp. 300, 1999
36 Sueoka, E., Sueoka, N., Kai, Y., Okabe, S., Suganuma, M., Kanematsu, K., Yamamoto, T., and Fujiki, H., Anticancer activity of morphine and its synthetic derivative, KT-90, mediated through apoptosis and inhibition of NF-kappa B activation. Biochemical and Biophysical Research Communications, 252, 566-570 (1998)   DOI   PUBMED   ScienceOn