• 제목/요약/키워드: Pro-inflammatory mediators

검색결과 289건 처리시간 0.026초

금은화(金銀花)와 황금(黃芩)이 배오(配伍)된 처방제(處方劑)의 항염증(抗炎症) 효과(效果) 연구(硏究) (Study on the Anti-inflammatory Effects of the Remedy Prescripted with Lonicerae Flos and Scutellariae Radix in U937 cells)

  • 이용숙;장선일
    • 대한한의학방제학회지
    • /
    • 제18권1호
    • /
    • pp.121-132
    • /
    • 2010
  • Inflammatory reaction is characterized by over-production of inflammatory mediators due to an up-regulation of inflammatory pathways, which produce pro-inflammatory mediators, such as interleukin-1beta (IL-$1{\beta}$), IL-6, tumour necrosis factor alpha (TNF-$\alpha$), prostaglantin $E_2$ ($PGE_2$), and nitric oxide (NO) in U937 cells. We investigate the anti-inflammatory effects of water extracts from Lonicerae Flos and Scutellariae Radix in lipopolysaccharide (LPS)-stimulated U937 cells. Each extract suppressed the production of inflammatory mediators (NO, IL-$1{\beta}$, TNF-$\alpha$, and $PGE_2$) and the expression of inducible NO synthase and cyclooxygenase-2 in LPS- stimulated U937 cells in a dose-dependent manner. These suppressive effects were synergistically increased by their combination. Their combination extract also inhibited NF-${\kappa}B$-DNA complex of NF-${\kappa}B$ binding activity and translocation of NF-${\kappa}B$ from cytosol to nucleus. These results suggest that the combination of water-extractable components of Lonicerae Flos and Scutellariae Radix may be useful for therapeutic drugs against inflammatory immune diseases, probably by suppressing the production of inflammatory mediators.

The Role of Nrf2 in Cellular Innate Immune Response to Inflammatory Injury

  • Kim, Ji-Young;Surh, Young-Joon
    • Toxicological Research
    • /
    • 제25권4호
    • /
    • pp.159-173
    • /
    • 2009
  • Nuclear factor erythroid derived 2-related factor-2 (Nrf2) is a master transcription regulator of antioxidant and cytoprotective proteins that mediate cellular defense against oxidative and inflammatory stresses. Disruption of cellular stress response by Nrf2 deficiency causes enhanced susceptibility to infection and related inflammatory diseases as a consequence of exacerbated immune-mediated hypersensitivity and autoimmunity. The cellular defense capacity potentiated by Nrf2 activation appears to balance the population of $CD4^+$ and $CD8^+$ of lymph node cells for proper innate immune responses. Nrf2 can negatively regulate the activation of pro-inflammatory signaling molecules such as p38 MAPK, NF-${\kappa}B$, and AP-1. Nrf2 subsequently functions to inhibit the production of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, COX-2 and iNOS. Although not clearly elucidated, the antioxidative function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the expression of pro-inflammatory mediators.

Inhibitory Effects on Oral Microbial Activity and Production of Lipopolysaccharides-Induced Pro-Inflammatory Mediators in Raw264.7 Macrophages of Ethanol Extract of Perilla flutescens (L.) Britton

  • Jeong, Moon-Jin;Lim, Do-Seon;Lee, Myoung-Hwa;Heo, Kyungwon;Kim, Han-Hong;Jeong, Soon-Jeong
    • 치위생과학회지
    • /
    • 제20권4호
    • /
    • pp.213-220
    • /
    • 2020
  • Background: The leaves of Perilla frutescens, commonly called perilla and used for food in Korea, contain components with a variety of biological effects and potential therapeutic applications. The purpose of this study was to identify the components of 70% ethanol extracted Perilla frutescens (EEPF) and determine its inhibitory effects on oral microbial activity and production of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharides (LPS)-stimulated Raw264.7 macrophages, consequently, to confirm the possibility of using EEPF as a functional component for improving the oral environment and preventing inflammation. Methods: One kg of P. frutescens leaves was extracted with 70% ethanol and dried at -70℃. EEPF was analyzed using high-performance liquid chromatography analysis, and antimicrobial activity against oral microorganisms was revealed using the disk diffusion test. Cell viability was elucidated using a methylthiazolydiphenyl-tetrazolium bromide assay, and the effect of EEPF on LPS-induced morphological variation was confirmed through microscopic observation. The effect of EEPF on LPS-induced production of pro-inflammatory mediators, NO and PGE2 was confirmed by the NO assay and PGE2 enzyme-linked immunosorbent assay. Results: The main component of EEPF was rosemarinic acid, and EEPF showed weak anti-bacterial and anti-fungal effects against microorganisms living in the oral cavity. EEPF did not show toxicity to Raw264.7 macrophages and had inhibitory effects on the morphological variations and production of pro-inflammatory mediators, NO and PGE2 in LPS-stimulated Raw264.7 macrophages. Conclusion: EEPF can be used as a functional material for improving the oral environment through the control of oral microorganisms and for modulating inflammation by inhibiting the production of inflammatory mediators.

Celastrol ameliorates cytokine toxicity and pro-inflammatory immune responses by suppressing NF-κB activation in RINm5F beta cells

  • Ju, Sung Mi;Youn, Gi Soo;Cho, Yoon Shin;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • 제48권3호
    • /
    • pp.172-177
    • /
    • 2015
  • Upregulation of pro-inflammatory mediators contributes to ${\beta}$-cell destruction and enhanced infiltration of immune cells into pancreatic islets during development of type 1 diabetes mellitus. In this study, we examined the regulatory effects and the mechanisms of action of celastrol against cytotoxicity and pro-inflammatory immune responses in the RINm5F rat pancreatic ${\beta}$-cell line stimulated with a combination of interleukin-1 beta, tumor necrosis factor-alpha, and interferon-${\gamma}$. Celastrol significantly restored cytokine-induced cell death and significantly inhibited cytokine-induced nitric oxide production. In addition, the protective effect of celastrol was correlated with a reduction in pro-inflammatory mediators, such as inducible nitric oxide synthase, cyclooxygenase-2, and CC chemokine ligand 2. Furthermore, celastrol significantly suppressed cytokine-induced signaling cascades leading to nuclear factor kappa B (NF-${\kappa}B$) activation, including $I{\kappa}B$-kinase (IKK) activation, $I{\kappa}B$ degradation, p65 phosphorylation, and p65 DNA binding activity. These results suggest that celastrol may exert its cytoprotective activity by suppressing cytokine-induced expression of pro-inflammatory mediators by inhibiting activation of NF-${\kappa}B$ in RINm5F cells.

Anti-inflammatory Effect of Bear's Gall in Rat Microglia

  • Joo, Seong-Soo;Yoo, Yeong-Min;Lee, Seon-Goo;Lee, Do-Ik
    • 동의생리병리학회지
    • /
    • 제19권1호
    • /
    • pp.204-211
    • /
    • 2005
  • We hypothesize that bear's gall may have a certain role in anti-inflammation through a preventive effect of pro-inflammatory potentials. Secondly, we tried to connect the experimental results to Alzheimer's disease (AD), which chronic inflammation is a main cause of the disease. For this theme, we designed to elucidate the efficacy of bear's gall in suppressing the pro-inflammatory mediators, such as nitric oxide (NO) and $interleukin-1{\beta}\;(IL-1{\beta})$ in rat microglia. From the study, we concluded that bear's gall plays a positive role in suppressing such pro-inflammatory repertoire from rat microglia comparing to normal and positive control, such as culture media and cyclosporine. Interestingly, bear's gall showed a prolonged effect of anti-inflammation comparing with cyclosporine when time goes by up to 48h with a significant suppression at $1.2\;mg/m{\ell}$. Therefore, we can consider that bear's gall in part can be applied to AD therapy in that it suppresses the expression of pro-inflammatory mediators as well as its continued effect.

삼칠화(三七花)의 대식세포로부터 LPS에 의해 유도되는 nitric oxide와 전염중성 사이토카인의 생성 억제효과 (Flower MeOH Extract of Panax Notoginseng Attenuates the Production of Nitric Oxide and Pro-inflammatory Cytokines in LPS-stimulated RA W264.7 Cells)

  • 주예진;정혜미;서운교
    • 대한한의학회지
    • /
    • 제30권1호
    • /
    • pp.150-162
    • /
    • 2009
  • Objectives: Inflammatory mediators, such as nitric oxide (NO), prostaglandin E2 ($PGE_2$) and pro-inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$ playa critical role in inflammatory immune response. Therefore, intervention of inflammatory mediator production promises therapeutic benefit for treatment of many chronic inflammatory diseases, such as allergic asthma, rheumatoid arthritis, multiple sclerosis, septic shock and neurodegenerative diseases. In this study, the pharmacological effects of the flower MeOH extract Panax notoginseng (Notoginseng Flos; NF) on inflammation were investigated to address potential therapeutic or toxic effects. Methods: RA W264.7 cells were treated with different concentrations of NF methanol (NF-M) extract in the presence or absence of LPS ($1{\mu}g/m{\ell}$). Results: NF-M extract significantly inhibited LPS-induced production of NO, $PGE_2$ and pro-inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$ in a dose-dependent manner. In addition, NF-M extract suppressed mRNA expressions and protein levels of iNOS, COX-2 and pro-inflammatory cytokines in LPS-stimulated RA W264.7 cells. Conclusion: These results indicated that NF-M extract inhibits LPS-induced production of inflammatory mediators in macrophages and demonstrated that NF-M extract possesses anti-inflammatory properties in vitro.

  • PDF

고농도의 글루코스가 치주질환 병인균주의 세균내독소에 의한 염증성 cytokine 및 nitric oxide의 생성에 미치는 영향 (The effect of high concentration of glucose on the production of proinflammatory cytokines and nitric oxide induced by lipopolysaccharides from periodontopathic bacteria)

  • 김성조
    • Journal of Periodontal and Implant Science
    • /
    • 제38권3호
    • /
    • pp.511-520
    • /
    • 2008
  • Purpose: Diabetes mellitus is a clinically and genetically heterogeneous group of metabolic disorders manifested by abnormally high levels of glucose in the blood. Mounting evidence demonstrates that diabetes is a risk factor for gingivitis and periodontitis. The circulating mononuclear phagocytes in diabetic patients with hyperglycemia are chronically exposed to high level of serum glucose. Thus, this study attempted to determine the effect of pre-exposure of monocytes and macrophages to high concentration of glucose on lipopolysaccharide (LPS)-induced production of pro-inflammatory mediators. Material and Methods: For this purpose, cells were cultured in medium containing normal (5 mM) or high glucose (25 mM) for 4-5 weeks before treatment for 24 h with LPS. LPS was highly purified from Porphyromonas gingivalis or Prevotella intermedia by phenol extraction. Result: Results showed that prolonged pre-exposure of cells to high glucose markedly increased LPS-stimulated NO secretion when compared to normal glucose. In addition to NO, high glucose also augmented LPS-stimulated IL-6, IL-8, and TNF-$\alpha$ secretion after cells were exposed to high glucose for 4 weeks. Conclusion: The present study demonstrates that pre-exposure of mononuclear phagocytes with high glucose augments LPS-stimulated production of pro-inflammatory mediators. These findings may explain why periodontal tissue destruction in diabetic patients is more severe than that in non-diabetic individuals.

Solanum lycopersicum (tomato) ethanol extract elicits anti-inflammatory effects via the nuclear factor kappa B pathway and rescues mice from septic shock

  • Saba, Evelyn;Oh, Mi-Ju;Kwak, Dongmi;Roh, Seong-Soo;Kwon, Hyuk-Woo;Kim, Sung-Dae;Rhee, Man Hee
    • 대한수의학회지
    • /
    • 제57권2호
    • /
    • pp.97-104
    • /
    • 2017
  • Solanum lycopersicum, commonly known as tomato, is widely used in raw, cooked, or liquid forms because it contains nutritional compounds that are beneficial for human health, including carotenoids, lycopene, ascorbic acid, vitamins, and minerals. The tomato is perhaps the most widely studied fruit, especially with respect to its cardioprotective effects. In this study, we aimed to identify the anti-inflammatory mechanisms by which the tomato elicits its anti-inflammatory properties. We treated murine macrophage RAW 264.7 cells with a tomato ethanol extract and performed various biochemical assays including nitric oxide inhibition, cell viability, RNA extraction, expression of pro-inflammatory mediators and cytokines, and immunoblotting, as well we assessed cell survival rates. Our results have shown for the first time that a tomato ethanol extract treatment can suppress nitric oxide production in a dose-dependent manner without cytotoxicity. Moreover, it inhibits the expression of pro-inflammatory mediators and cytokines and elicits its anti-inflammatory effects via the nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) and mitogen-activated protein kinase (MAPK) pathways. In addition, administration of tomato syrup potently rescued mice from septic shock induced by lipopolysaccharide injection. Collectively, our results elucidate details regarding the anti-inflammatory mechanisms of tomato.

Intestinal anti-inflammatory activity of Sasa quelpaertensis leaf extract by suppressing lipopolysaccharide-stimulated inflammatory mediators in intestinal epithelial Caco-2 cells co-cultured with RAW 264.7 macrophage cells

  • Kim, Kyung-Mi;Kim, Yoo-Sun;Lim, Ji Ye;Min, Soo Jin;Ko, Hee-Chul;Kim, Se-Jae;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • 제9권1호
    • /
    • pp.3-10
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract. Previously, Sasa quelpaertensis leaves have been shown to mediate anti-inflammation and anti-cancer effects, although it remains unclear whether Sasa leaves are able to attenuate inflammation-related intestinal diseases. Therefore, the aim of this study was to investigate the anti-inflammatory effects of Sasa quelpaertensis leaf extract (SQE) using an in vitro co-culture model of the intestinal epithelial environment. MATERIALS/METHODS: An in vitro co-culture system was established that consisted of intestinal epithelial Caco-2 cells and RAW 264.7 macrophages. Treatment with lipopolysaccharide (LPS) was used to induce inflammation. RESULTS: Treatment with SQE significantly suppressed the secretion of LPS-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), IL-6, and IL-$1{\beta}$ in co-cultured RAW 264.7 macrophages. In addition, expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-${\alpha}$ were down-regulated in response to inhibition of $I{\kappa}B{\alpha}$ phosphorylation by SQE. Compared with two bioactive compounds that have previously been identified in SQE, tricin and P-coumaric acid, SQE exhibited the most effective anti-inflammatory properties. CONCLUSIONS: SQE exhibited intestinal anti-inflammatory activity by inhibiting various inflammatory mediators mediated through nuclear transcription factor kappa-B (NF-kB) activation. Thus, SQE has the potential to ameliorate inflammation-related diseases, including IBD, by limiting excessive production of pro-inflammatory mediators.

RAW 264.7 Cell에서 리포폴리사카라이드로 유도된 염증성 매개인자들의 생산에 있어서 Corticosterone 전처리 효과 (Effect of Corticosterone Pretreatment on the Production of LPS-Induced Inflammatory Mediators in RAW 264.7 Cells)

  • 채병숙
    • 약학회지
    • /
    • 제59권5호
    • /
    • pp.215-221
    • /
    • 2015
  • Glucocorticoids are known to have anti-inflammatory effect. To investigate whether corticosterone pretreatment enhances or not lipopolysaccharide (LPS)-induced production of inflammatory mediators, RAW 264.7 cells were pretreated with various concentrations of corticosterone for 24 h and then cultured without corticosterone in the presence or absence of LPS. Our results demonstrated that LPS remarkably increased production of TNF-${\alpha}$, IL-6, IL-$1{\beta}$, vascular endothelial growth factor (VEGF), and NO (nitric oxide). Corticosterone pretreatment significantly attenuated LPS-induced production of TNF-${\alpha}$, IL-$1{\beta}$, and VEGF, while significantly enhanced IL-6 and NO. These findings suggest that corticosterone pretreatment may contribute to LPS-induced inflammatory responses in macrophages via pro- and anti-inflammatory imbalance of inflammatory mediators.