• Title/Summary/Keyword: Privacy preservation

Search Result 67, Processing Time 0.019 seconds

An Efficient Anonymous Authentication and Vehicle Tracing Protocol for Secure Vehicular Communications

  • Park, Young-Shin;Jung, Chae-Duk;Park, Young-Ho;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.865-874
    • /
    • 2010
  • Recently, Hao et al. proposed a privacy preservation protocol based on group signature scheme for secure vehicular communications to overcome a well-recognized problems of secure VANETs based on PKI. However, although efficient group signature schemes have been proposed in cryptographic literatures, group signature itself is still a rather much time consuming operation. In this paper, we propose a more efficient privacy preservation protocol than that of Hao et al. In order to design a more efficient anonymous authentication protocol, we consider a key-insulated signature scheme as our cryptographic building block. We demonstrate experimental results to confirm that the proposed protocol is more efficient than the previous scheme.

Extending Role-based Access Control for Privacy Preservation in Academic Affairs System (교무업무시스템에서의 개인정보보호를 위한 역할기반 접근 제어 확장)

  • Kim, Bo-Seon;Hong, Eui-Kyeong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.2
    • /
    • pp.171-179
    • /
    • 2008
  • RBAC(Role based Access Control) is effective way of managing user's access to information object in enterprise level and e-government system. The concept of RBAC is that the access right to object in a system is not directly assigned o users but assigned by being a member of a role which is defined in a organization. RBAC is utilized for controling access range of privacy but it does not support the personal legal right of control over information and right of limited access to the self. Nor it contains the way of observation of privacy flow that is guided in a legal level. In this paper, extended RBAC model for protecting privacy will be suggested and discussed. Two components of Data Right and Assigning Data Right are added to existed RBAC and the definition of each component is redefined in aspect of privacy preservation. Data Right in extended RBAC represents the access right to privacy data. This component provides the way of control over who can access which privacy and ensures limitation of access quantity of privacy. Based on this extended RBAC, implemented examples are presented and the evaluation is discussed by comparing existed RBAC with extended RBAC.

Noise Averaging Effect on Privacy-Preserving Clustering of Time-Series Data (시계열 데이터의 프라이버시 보호 클러스터링에서 노이즈 평준화 효과)

  • Moon, Yang-Sae;Kim, Hea-Suk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.356-360
    • /
    • 2010
  • Recently, there have been many research efforts on privacy-preserving data mining. In privacy-preserving data mining, accuracy preservation of mining results is as important as privacy preservation. Random perturbation privacy-preserving data mining technique is known to well preserve privacy. However, it has a problem that it destroys distance orders among time-series. In this paper, we propose a notion of the noise averaging effect of piecewise aggregate approximation(PAA), which can be preserved the clustering accuracy as high as possible in time-series data clustering. Based on the noise averaging effect, we define the PAA distance in computing distance. And, we show that our PAA distance can alleviate the problem of destroying distance orders in random perturbing time series.

Privacy-Preserving Two-Party Collaborative Filtering on Overlapped Ratings

  • Memis, Burak;Yakut, Ibrahim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2948-2966
    • /
    • 2014
  • To promote recommendation services through prediction quality, some privacy-preserving collaborative filtering solutions are proposed to make e-commerce parties collaborate on partitioned data. It is almost probable that two parties hold ratings for the same users and items simultaneously; however, existing two-party privacy-preserving collaborative filtering solutions do not cover such overlaps. Since rating values and rated items are confidential, overlapping ratings make privacy-preservation more challenging. This study examines how to estimate predictions privately based on partitioned data with overlapped entries between two e-commerce companies. We consider both user-based and item-based collaborative filtering approaches and propose novel privacy-preserving collaborative filtering schemes in this sense. We also evaluate our schemes using real movie dataset, and the empirical outcomes show that the parties can promote collaborative services using our schemes.

A Solution to Privacy Preservation in Publishing Human Trajectories

  • Li, Xianming;Sun, Guangzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3328-3349
    • /
    • 2020
  • With rapid development of ubiquitous computing and location-based services (LBSs), human trajectory data and associated activities are increasingly easily recorded. Inappropriately publishing trajectory data may leak users' privacy. Therefore, we study publishing trajectory data while preserving privacy, denoted privacy-preserving activity trajectories publishing (PPATP). We propose S-PPATP to solve this problem. S-PPATP comprises three steps: modeling, algorithm design and algorithm adjustment. During modeling, two user models describe users' behaviors: one based on a Markov chain and the other based on the hidden Markov model. We assume a potential adversary who intends to infer users' privacy, defined as a set of sensitive information. An adversary model is then proposed to define the adversary's background knowledge and inference method. Additionally, privacy requirements and a data quality metric are defined for assessment. During algorithm design, we propose two publishing algorithms corresponding to the user models and prove that both algorithms satisfy the privacy requirement. Then, we perform a comparative analysis on utility, efficiency and speedup techniques. Finally, we evaluate our algorithms through experiments on several datasets. The experiment results verify that our proposed algorithms preserve users' privay. We also test utility and discuss the privacy-utility tradeoff that real-world data publishers may face.

Light-weight Preservation of Access Pattern Privacy in Un-trusted Storage

  • Yang, Ka;Zhang, Jinsheng;Zhang, Wensheng;Qiao, Daji
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.282-296
    • /
    • 2013
  • With the emergence of cloud computing, more and more sensitive user data are outsourced to remote storage servers. The privacy of users' access pattern to the data should be protected to prevent un-trusted storage servers from inferring users' private information or launching stealthy attacks. Meanwhile, the privacy protection schemes should be efficient as cloud users often use thin client devices to access the data. In this paper, we propose a lightweight scheme to protect the privacy of data access pattern. Comparing with existing state-of-the-art solutions, our scheme incurs less communication and computational overhead, requires significantly less storage space at the user side, while consuming similar storage space at the server. Rigorous proofs and extensive evaluations have been conducted to show that the proposed scheme can hide the data access pattern effectively in the long run after a reasonable number of accesses have been made.

  • PDF

Augmented Rotation-Based Transformation for Privacy-Preserving Data Clustering

  • Hong, Do-Won;Mohaisen, Abedelaziz
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.351-361
    • /
    • 2010
  • Multiple rotation-based transformation (MRBT) was introduced recently for mitigating the apriori-knowledge independent component analysis (AK-ICA) attack on rotation-based transformation (RBT), which is used for privacy-preserving data clustering. MRBT is shown to mitigate the AK-ICA attack but at the expense of data utility by not enabling conventional clustering. In this paper, we extend the MRBT scheme and introduce an augmented rotation-based transformation (ARBT) scheme that utilizes linearity of transformation and that both mitigates the AK-ICA attack and enables conventional clustering on data subsets transformed using the MRBT. In order to demonstrate the computational feasibility aspect of ARBT along with RBT and MRBT, we develop a toolkit and use it to empirically compare the different schemes of privacy-preserving data clustering based on data transformation in terms of their overhead and privacy.

Differential Privacy Technology Resistant to the Model Inversion Attack in AI Environments (AI 환경에서 모델 전도 공격에 안전한 차분 프라이버시 기술)

  • Park, Cheollhee;Hong, Dowon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.589-598
    • /
    • 2019
  • The amount of digital data a is explosively growing, and these data have large potential values. Countries and companies are creating various added values from vast amounts of data, and are making a lot of investments in data analysis techniques. The privacy problem that occurs in data analysis is a major factor that hinders data utilization. Recently, as privacy violation attacks on neural network models have been proposed. researches on artificial neural network technology that preserves privacy is required. Therefore, various privacy preserving artificial neural network technologies have been studied in the field of differential privacy that ensures strict privacy. However, there are problems that the balance between the accuracy of the neural network model and the privacy budget is not appropriate. In this paper, we study differential privacy techniques that preserve the performance of a model within a given privacy budget and is resistant to model inversion attacks. Also, we analyze the resistance of model inversion attack according to privacy preservation strength.

A Survey of System Architectures, Privacy Preservation, and Main Research Challenges on Location-Based Services

  • Tefera, Mulugeta K.;Yang, Xiaolong;Sun, Qifu Tyler
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3199-3218
    • /
    • 2019
  • Location-based services (LBSs) have become popular in recent years due to the ever-increasing usage of smart mobile devices and mobile applications through networks. Although LBS application provides great benefits to mobile users, it also raises a sever privacy concern of users due to the untrusted service providers. In the lack of privacy enhancing mechanisms, most applications of the LBS may discourage the user's acceptance of location services in general, and endanger the user's privacy in particular. Therefore, it is a great interest to discuss on the recent privacy-preserving mechanisms in LBSs. Many existing location-privacy protection-mechanisms (LPPMs) make great efforts to increase the attacker's uncertainty on the user's actual whereabouts by generating a multiple of fake-locations together with user's actual positions. In this survey, we present a study and analysis of existing LPPMs and the state-of-art privacy measures in service quality aware LBS applications. We first study the general architecture of privacy qualification system for LBSs by surveying the existing framework and outlining its main feature components. We then give an overview of the basic privacy requirements to be considered in the design and evaluation of LPPMs. Furthermore, we discuss the classification and countermeasure solutions of existing LPPMs for mitigating the current LBS privacy protection challenges. These classifications include anonymization, obfuscation, and an encryption-based technique, as well as the combination of them is called a hybrid mechanism. Finally, we discuss several open issues and research challenges based on the latest progresses for on-going LBS and location privacy research.