Journal of the Korea Institute of Information Security & Cryptology
/
v.27
no.6
/
pp.1373-1383
/
2017
Deduplication is a function to effectively manage data and improve the efficiency of storage space. When the deduplication is applied to the system, it makes it possible to efficiently use the storage space by dividing the stored file into chunks and storing only unique chunk. However, the commercial digital forensic tool do not support the file system analysis, and the original file extracted by the tool can not be executed or opened. Therefore, in this paper, we analyze the process of generating chunks of data for a Windows Server 2012 system that can apply deduplication, and the structure of the resulting file(Chunk Storage). We also analyzed the case where chunks that are not covered in the previous study are compressed. Based on these results, we propose the method to collect deduplicated data and reconstruct the original file for digital forensic investigation.
Kang, Seung Ju;Chun, Ji Young;Noh, Geontae;Jeong, Ik Rae
Journal of Internet Computing and Services
/
v.23
no.4
/
pp.73-85
/
2022
In the era of the 4th industrial revolution, where automation and connectivity are maximized with artificial intelligence, the importance of data collection and utilization for model update is increasing. In order to create a model using artificial intelligence technology, it is usually necessary to gather data in one place so that it can be updated, but this can infringe users' privacy. In this paper, we introduce federated learning, a distributed machine learning method that can update models in cooperation without directly sharing distributed stored data, and introduce a study to optimize distributed consensus among participants without an existing server. In addition, we propose a pattern and group-based distributed consensus optimization algorithm that uses an algorithm for generating patterns and groups based on the Kirkman Triple System, and performs parallel updates and communication. This algorithm guarantees more privacy than the existing distributed consensus optimization algorithm and reduces the communication time until the model converges.
POI refers to the point of Interest in Location-Based Social Networks (LBSNs). With the rapid development of mobile devices, GPS, and the Web (web2.0 and 3.0), LBSNs have attracted many users to share their information, physical location (real-time location), and interesting places. The tremendous demand of the user in LBSNs leads the recommendation systems (RSs) to become more widespread attention. Recommendation systems assist users in discovering interesting local attractions or facilities and help social network service (SNS) providers based on user locations. Therefore, it plays a vital role in LBSNs, namely POI recommendation system. In the machine learning model, most of the training data are stored in the centralized data storage, so information that belongs to the user will store in the centralized storage, and users may face privacy issues. Moreover, sharing the information may have safety concerns because of uploading or sharing their real-time location with others through social network media. According to the privacy concern issue, the paper proposes a recommendation model to prevent user privacy and eliminate traditional RS problems such as cold-start and data sparsity.
International Journal of Computer Science & Network Security
/
v.24
no.3
/
pp.23-28
/
2024
The multi-tenancy and high scalability of the cloud have inspired businesses and organizations across various sectors to adopt and deploy cloud computing. Cloud computing provides cost-effective, reliable, and convenient access to pooled resources, including storage, servers, and networking. Cloud service models, SaaS, PaaS, and IaaS, enable organizations, developers, and end users to access resources, develop and deploy applications, and provide access to pooled computing infrastructure. Despite the benefits, cloud service models are vulnerable to multiple security and privacy attacks and threats. The SaaS layer is on top of the PaaS, and the IaaS is the bottom layer of the model. The software is hosted by a platform offered as a service through an infrastructure provided by a cloud computing provider. The Hypertext Transfer Protocol (HTTP) delivers cloud-based apps through a web browser. The stateless nature of HTTP facilitates session hijacking and related attacks. The Open Web Applications Security Project identifies web apps' most critical security risks as SQL injections, cross-site scripting, sensitive data leakage, lack of functional access control, and broken authentication. The systematic literature review reveals that data security, application-level security, and authentication are the primary security threats in the SaaS model. The recommended solutions to enhance security in SaaS include Elliptic-curve cryptography and Identity-based encryption. Integration and security challenges in PaaS and IaaS can be effectively addressed using well-defined APIs, implementing Service Level Agreements (SLAs), and standard syntax for cloud provisioning.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.11
/
pp.5671-5693
/
2017
With the rapid development of cloud computing, more and more data owners are motivated to outsource their data to cloud for various benefits. Due to serious privacy concerns, sensitive data should be encrypted before being outsourced to the cloud. However, this results that effective data utilization becomes a very challenging task, such as keyword search over ciphertexts. Although many searchable encryption methods have been proposed, they only support exact keyword search. Thus, misspelled keywords in the query will result in wrong or no matching. Very recently, a few methods extends the search capability to fuzzy keyword search. Some of them may result in inaccurate search results. The other methods need very large indexes which inevitably lead to low search efficiency. Additionally, the above fuzzy keyword search methods do not support access control. In our paper, we propose a searchable encryption method which achieves fuzzy search and access control through algorithm design and Ciphertext-Policy Attribute-based Encryption (CP-ABE). In our method, the index is small and the search results are accurate. We present word pattern which can be used to balance the search efficiency and privacy. Finally, we conduct extensive experiments and analyze the security of the proposed method.
Journal of the Korea Institute of Information Security & Cryptology
/
v.27
no.6
/
pp.1483-1490
/
2017
Wearable devices need a host device to be paired with because of connectivity, functionality and ease personalization. There should be frequent update and backup processes between the paired devices even without user's consciousness. Due to pairing process, user-specific data are copied from smartphone and transferred to paired smartwatch. We focus on what happens in smartwatch because of pairing process. We perform an experiment study by observing and extracting data from smartwatch under real world usage phases. With a survey of user awareness on smartwatch regarding security and privacy, moreover, we suggest risk assessment on smartwatch in five levels, particularly considering pairing process based on security and privacy.
This study was carried out to identify the impact of EU GDPR on international trade amid the ongoing digital trade liberalization. To do this, we first looked at the current trend of digital trade liberalization, the role of data in it, and the trade-restrictive elements of EU GDPR. This allowed us to identify the negative impact of GDPR on free trade. It then conducted an interview survey on Korean companies operating in the EU to verify the conclusions reached. The result of this survey showed that the level of GDPR risk perceived by Korean firms was very low compared with those of American, Japanese and Chinese firms. In particular, the impact of GDPR is not clear for Korea's SMEs. It can be assumed that the reason for this is that Korean SMEs are not using data as a major business tool while the capability of SMEs is sufficient to cope with GDPR. In this regard, the government's appropriate policies and further research for SMEs are needed.
Mohammed Al-Shalabi;Waleed K. Abdulraheem;Jafar Ababneh;Nader Abdel Karim
International Journal of Computer Science & Network Security
/
v.24
no.1
/
pp.61-70
/
2024
Cloud Computing is internet-based computing, where the users are provided with whatever service they need from the resources, software, and information. Recently, the security of cloud computing is considered as one of the major issues for both cloud service providers CSP and end-users. Privacy and highly confidential data make many users refuse to store their data within cloud computing, since data on cloud computing is not dully secured. The cryptographic algorithm is a technique which is used to maintain the security and privacy of the data on the cloud. In this research, we applied eight different cryptographic algorithms on Xen and KVM as hypervisors on cloud computing, to be able to measure and compare the performance of the two hypervisors. Response time and CPU utilization while encryption and decryption have been our aspects to measure the performance. In terms of response time and CPU utilization, results show that KVM is more efficient than Xen on average at 11.5% and 11% respectively. While TripleDES cryptographic algorithm shows a more efficient time response at Xen hypervisor than KVM.
As remote services and remote work become commonplace, the use of the Metaverse has grown. This allows transactions like real estate and finance in virtual Second Life. However, conducting economic activities in the Metaverse presents unique security challenges compared to the physical world and conventional cyberspace. To address these, the paper proposes solutions centered on authentication and privacy. It suggests improving data preprocessing based on Metaverse data's uniqueness and introduces a new authentication service using NFTs while adhering to W3C's DID framework. The system is implemented using Hyperledger Indy blockchain, and its success is confirmed through implementation analysis.
In the field of smart water management, there is an increasing demand for strengthening competitiveness through big data analysis. As a result, systematic management (Governance) of big data is becoming an important issue. Big data governance is a systematic approach to evaluating, directing and monitoring data management, such as data quality assurance, privacy protection, data lifetime management, data ownership and clarification of management rights. Failure to establish big data governance can lead to serious problems by using low quality data for critical decisions. In addition, personal privacy data can make Big Brother worry come true, and IT costs can skyrocket due to the neglect of data age management. Even if these technical problems are fixed, the big data effects will not be sustained unless there are organizations and personnel who are dedicated and responsible for data-related issues. In this paper, we propose a method of building data governance for smart water data management based on big data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.