• Title/Summary/Keyword: Prior Information

Search Result 2,613, Processing Time 0.025 seconds

Development of Noninformative Priors in the Burr Model

  • Cho, Jang-Sik;Kang, Sang-Gil;Baek, Sung-Uk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.83-92
    • /
    • 2003
  • In this paper, we derive noninformative priors for the ratio of parameters in the Burr model. We obtain Jeffreys' prior, reference prior and second order probability matching prior. Also we prove that the noninformative prior matches the alternative coverage probabilities and a HPD matching prior up to the second order, respectively. Finally, we provide simulated frequentist coverage probabilities under the derived noninformative priors for small and moderate size of samples.

  • PDF

Noninformative priors for the scale parameter in the generalized Pareto distribution

  • Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1521-1529
    • /
    • 2013
  • In this paper, we develop noninformative priors for the generalized Pareto distribution when the scale parameter is of interest. We developed the rst order and the second order matching priors. We revealed that the second order matching prior does not exist. It turns out that the reference prior and Jeffrey's prior do not satisfy a first order matching criterion, and Jeffreys' prior, the reference prior and the matching prior are different. Some simulation study is performed and a real example is given.

Noninformative priors for Pareto distribution

  • Kim, Dal-Ho;Kang, Sang-Gil;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1213-1223
    • /
    • 2009
  • In this paper, we develop noninformative priors for two parameter Pareto distribution. Specially, we derive Jereys' prior, probability matching prior and reference prior for the parameter of interest. In our case, the probability matching prior is only a first order matching prior and there does not exist a second order matching prior. Some simulation reveals that the matching prior performs better to achieve the coverage probability. A real example is also considered.

  • PDF

Noninformative priors for the common mean in log-normal distributions

  • Kang, Sang-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1241-1250
    • /
    • 2011
  • In this paper, we develop noninformative priors for the log-normal distributions when the parameter of interest is the common mean. We developed Jeffreys' prior, th reference priors and the first order matching priors. It turns out that the reference prior and Jeffreys' prior do not satisfy a first order matching criterion, and Jeffreys' pri the reference prior and the first order matching prior are different. Some simulation study is performed and a real example is given.

A Study of Parameter Estimation with the Prior-Information by Using the Multiple Stratification (사전정보가 있는 경우 다중층화를 이용한 모수추정연구)

  • 이해용
    • Journal of Applied Reliability
    • /
    • v.3 no.2
    • /
    • pp.117-125
    • /
    • 2003
  • In sampling survey, prior-information about population has been generally ignored to estimate parameters. But if there is some believable prior-information about population, it is very useful to get more efficiency estimators by using the prior-information. This paper shows how to estimate the parameter, to evaluate the variance of the estimator, and to un-biasness of the estimator by using multiple stratification with prior-information about survey population. The proposed method is illustrated with a set of hypothetical data. The results show that the proposed estimator is very efficiency and strongly recommendable.

  • PDF

Reference Prior and Posterior in the AR(1) Model

  • Lee, Yoon-Jae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.1
    • /
    • pp.71-78
    • /
    • 2005
  • Recently an important issue in Bayesian methodology is determination of noninformative prior distributions, often required when there is no idea of prior information. In this thesis attention is focused on the development of noninformative priors for stationary AR(1) model. The noninformative priors primarily discussed are the Jeffreys prior, and the reference priors. The remarkable points in the result are that the Jeffreys prior coincides with the reference prior for the case that $\rho$ is the parameter of interest.

  • PDF

Noninformative priors for linear combinations of exponential means

  • Lee, Woo Dong;Kim, Dal Ho;Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.565-575
    • /
    • 2016
  • In this paper, we develop the noninformative priors for the linear combinations of means in the exponential distributions. We develop the matching priors and the reference priors. The matching priors, the reference prior and Jeffreys' prior for the linear combinations of means are developed. It turns out that the reference prior and Jeffreys' prior are not a matching prior. We show that the proposed matching prior matches the target coverage probabilities much more accurately than the reference prior and Jeffreys' prior in a frequentist sense through simulation study, and an example based on real data is given.

Noninformative priors for the log-logistic distribution

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.227-235
    • /
    • 2014
  • In this paper, we develop the noninformative priors for the scale parameter and the shape parameter in the log-logistic distribution. We developed the first and second order matching priors. It turns out that the second order matching prior matches the alternative coverage probabilities, and is a highest posterior density matching prior. Also we revealed that the derived reference prior is the second order matching prior for both parameters, but Jerffrey's prior is not a second order matching prior. We showed that the proposed reference prior matches the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.

Noninformative priors for product of exponential means

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.763-772
    • /
    • 2015
  • In this paper, we develop the noninformative priors for the product of different powers of k means in the exponential distribution. We developed the first and second order matching priors. It turns out that the second order matching prior matches the alternative coverage probabilities, and is the highest posterior density matching prior. Also we revealed that the derived reference prior is the second order matching prior, and Jeffreys' prior and reference prior are the same. We showed that the proposed reference prior matches very well the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.

Noninformative Priors for the Common Shape Parameter in the Gamma Distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.247-257
    • /
    • 2007
  • In this paper, we develop the noninformative priors for the common shape parameter in the gamma distributions. We develop the matching priors and reveal that the second order matching prior does not exist. It turns out that the one-at-a-time reference prior and the two group reference prior satisfy a first order probability matching criterion. Some simulation study is peformed.

  • PDF