• Title/Summary/Keyword: Prior

Search Result 11,995, Processing Time 0.037 seconds

A Prior Model of Structural SVMs for Domain Adaptation

  • Lee, Chang-Ki;Jang, Myung-Gil
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.712-719
    • /
    • 2011
  • In this paper, we study the problem of domain adaptation for structural support vector machines (SVMs). We consider a number of domain adaptation approaches for structural SVMs and evaluate them on named entity recognition, part-of-speech tagging, and sentiment classification problems. Finally, we show that a prior model for structural SVMs outperforms other domain adaptation approaches in most cases. Moreover, the training time for this prior model is reduced compared to other domain adaptation methods with improvements in performance.

A Study on Noninformative Priors of Intraclass Correlation Coefficients in Familial Data

  • Jin, Bong-Soo;Kim, Byung-Hwee
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.395-411
    • /
    • 2005
  • In this paper, we develop the Jeffreys' prior, reference prior and the the probability matching priors for the difference of intraclass correlation coefficients in familial data. e prove the sufficient condition for propriety of posterior distributions. Using marginal posterior distributions under those noninformative priors, we compare posterior quantiles and frequentist coverage probability.

The Effect of Prior Price Trends on Optimistic Forecasting (이전 가격 트렌드가 낙관적 예측에 미치는 영향)

  • Kim, Young-Doo
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.10
    • /
    • pp.83-89
    • /
    • 2018
  • Purpose - The purpose of this study examines when the optimism impact on financial asset price forecasting and the boundary condition of optimism in the financial asset price forecasting. People generally tend to optimistically forecast their future. Optimism is a nature of human beings and optimistic forecasting observed in daily life. But is it always observed in financial asset price forecasting? In this study, two factors were focused on considering whether the optimism that people have applied to predicting future performance of financial investment products (e.g., mutual fund). First, this study examined whether the degree of optimism varied depending on the direction of the prior price trend. Second, this study examined whether the degree of optimism varied according to the forecast period by dividing the future forecasted by people into three time horizon based on forecast period. Research design, data, and methodology - 2 (prior price trend: rising-up trend vs falling-down trend) × 3 (forecast time horizon: short term vs medium term vs long term) experimental design was used. Prior price trend was used between subject and forecast time horizon was used within subject design. 169 undergraduate students participated in the experiment. χ2 analysis was used. In this study, prior price trend divided into two types: rising-up trend versus falling-down trend. Forecast time horizon divided into three types: short term (after one month), medium term (after one year), and long term (after five years). Results - Optimistic price forecasting and boundary condition was found. Participants who were exposed to falling-down trend did not make optimistic predictions in the short term, but over time they tended to be more optimistic about the future in the medium term and long term. However, participants who were exposed to rising-up trend were over-optimistic in the short term, but over time, less optimistic in the medium and long term. Optimistic price forecasting was found when participants forecasted in the long term. Exposure to prior price trends (rising-up trend vs falling-down trend) was a boundary condition of optimistic price forecasting. Conclusions - The results indicated that individuals were more likely to be impacted by prior price tends in the short term time horizon, while being optimistic in the long term time horizon.

Effects of Students' Prior Knowledge on Scientific Reasoning in Density (학생들의 사전 지식이 밀도과제의 과학적 추론에 미치는 영향)

  • Yang, II-Ho;Kwon, Yong-Ju;Kim, Young-Shin;Jang, Myoung-Duk;Jeong, Jin-Woo;Park, Kuk-Tae
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.2
    • /
    • pp.314-335
    • /
    • 2002
  • The purpose of this study was to investigate the effects of students' prior knowledge on scientific reasoning process performing a task of controlling variables with computer simulation and to identify a number of problems that students encounter in scientific discovery. Subjects for this study included 60 Korean students: 27 fifth-grade students from an elementary school; 33 seventh-grade students from a middle school. The sinking objects task involving multivariable causal inference was used. The task was presented as computer simulation. The fifth and seventh-grade students participated individually. A subject was interviewed individually while the investigating a scientific reasoning task. Interviews were videotaped for subsequent analysis. The results of this study indicated that students' prior knowledge had a strong effect on students' experimental intent; the majority of participants focused largely on demonstrating their prior knowledge or their current hypothesis. In addition, studnets' theories that were part of one's prior knowledge had significant impact on formulating hypotheses, testing hypothesis, evaluating evidence, and revising hypothesis. This study suggested that students' performance was characterized by tendencies to generate uninformative experiments, to make conclusion based on inconclusive or insufficient evidence, to ignore, reject, or reinterpret data inconsistent with their prior knowledge, to focus on causal factors and ignore noncausal factors, to have difficulty disconfirming prior knowledge, to have confirmation bias and inference bias (anchoring bias).

Determination of Prior Areas for Livestock Excreta Pollution Survey (가축분뇨실태조사를 위한 우선 조사 대상지역 선정 방안 도출)

  • Ryu, Hong-Duck;Park, Bae Kyung;Chung, Eu Gene;Ahn, Ki Hong;Choi, Won-Sik;Kim, Yongseok;Rhew, Doughee
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1085-1099
    • /
    • 2015
  • The purposes of this study were to suggest the methodology to select prior areas in the environmental pollution survey for livestock excreta (EPSLE) as well as to elucidate the validity of the methodology. In this study, the prior areas in the EPSLE were determined by examining the number of compost facilities categorized according to the three levels of size including the basin, the sub-basin and the watershed, respectively, based on the data from "Annual Nation-wide Pollution Sources Survey (2012)". The results suggested that the list of prior basins were Nakdong, Geum, Youngsan and Han river basins in order. Also, it was examined that the prior sub-basins in the four river basins including Nakdong, Geum, Youngsan and Han rivers were Naesung Stream, Geumgang Gongju, Juam Dam and Namhan Downstream, respectively. The prior watersheds in the sub-basins of Naesung stream, Geumgang Gongju, Juam Dam and Namhan Downstream were Seocheon Downstream, Geum Stream, Gyeombaek Suwipyo and Yanghwa Stream, respectively. The validity of the methodology used in this study was elucidated by analyzing the correlation of the number of compost facilities with the concentrations of T-N and T-P observed in the end-points of sub-basins. The results of correlation analysis showed that the concentrations of T-N and T-P increased with the number of compost facilities. Specifically, there was the stronger correlation between the number of compost facilities and the concentrations of T-N than that for T-P. Consequently, it was proved that the methodology used in this work was valid and rational for the selection of prior areas in environmental pollution survey for EPSLE.

Bayesian Analysis of GLEM with Half-Normal Prior

  • Bhattacharya, Samir K.;Lal, Ram
    • Journal of the Korean Statistical Society
    • /
    • v.14 no.2
    • /
    • pp.95-99
    • /
    • 1985
  • In this paper, Bayesian analysiss of the general linear econometric model is carried out by using a multinomal prior for the vector of unknown regression coefficents and a half-normal prior for the standard deviation of the disturbances.

  • PDF

Noninformative Priors for Stress-Strength System in the Burr-Type X Model

  • Kim, Dal-Ho;Kang, Sang-Gil;Cho, Jang-Sik
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.1
    • /
    • pp.17-27
    • /
    • 2000
  • In this paper, we develop noninformative priors that are used for estimating the reliability of stress-strength system under the Burr-type X model. A class of priors is found by matching the coverage probabilities of one-sided Bayesian credible interval with the corresponding frequentist coverage probabilities. It turns out that the reference prior as well as the Jeffreys prior are the second order matching prior. The propriety of posterior under the noninformative priors is proved. The frequentist coverage probabilities are investigated for samll samples via simulation study.

  • PDF

Sensitivity analysis in Bayesian nonignorable selection model for binary responses

  • Choi, Seong Mi;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.187-194
    • /
    • 2014
  • We consider a Bayesian nonignorable selection model to accommodate the selection bias. Markov chain Monte Carlo methods is known to be very useful to fit the nonignorable selection model. However, sensitivity to prior assumptions on parameters for selection mechanism is a potential problem. To quantify the sensitivity to prior assumption, the deviance information criterion and the conditional predictive ordinate are used to compare the goodness-of-fit under two different prior specifications. It turns out that the 'MLE' prior gives better fit than the 'uniform' prior in viewpoints of goodness-of-fit measures.

Multiple Comparison for the One-Way ANOVA with the Power Prior

  • Bae, Re-Na;Kang, Yun-Hee;Hong, Min-Young;Kim, Seong-W.
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.1
    • /
    • pp.13-26
    • /
    • 2008
  • Inference on the present data will be more reliable when the data arising from previous similar studies are available. The data arising from previous studies are referred as historical data. The power prior is defined by the likelihood function based on the historical data to the power $a_0$, where $0\;{\le}\;a_0\;{\le}\;1$. The power prior is a useful informative prior for Bayesian inference such as model selection and model comparison. We utilize the historical data to perform multiple comparison in the one-way ANOVA model. We demonstrate our results with some simulated datasets under a simple order restriction between the treatments.

Noninformative Priors for the Difference of Two Quantiles in Exponential Models

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.431-442
    • /
    • 2007
  • In this paper, we develop the noninformative priors when the parameter of interest is the difference between quantiles of two exponential distributions. We want to develop the first and second order probability matching priors. But we prove that the second order probability matching prior does not exist. It turns out that Jeffreys' prior does not satisfy the first order matching criterion. The Bayesian credible intervals based on the first order probability matching prior meet the frequentist target coverage probabilities much better than the frequentist intervals of Jeffreys' prior. Some simulation and real example will be given.