• Title/Summary/Keyword: Printing properties

Search Result 821, Processing Time 0.027 seconds

Study on the efficiency of cleaning Process for Screen printing cleaning (스크린 인쇄 세정에 대한 세정공정 효율 연구)

  • 최성용
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.15 no.1
    • /
    • pp.85-96
    • /
    • 1997
  • The color difference between original and printed copy is affected mainly by ink trapping and optical properties of overprinted ink layer. Since the general expression itself about ink trapping is affected also by the optical properties, the analysis of color difference using the ink trapping only cannot be certain. This study will show a new approaching method for optical analysis of spectral reflectance and the effect of printing sequence on color difference in multi-color overprints under the condition of excluding completely the ink trapping problems by means of using transparent film as a substrate.

  • PDF

Image Processing of the Photo CD Image to use in the Lithographic Offset Printing (평판 오프셋 인쇄에 이용하기위한 Photo CD 이미지의 화상처리)

  • 안석출
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.14 no.1
    • /
    • pp.31-45
    • /
    • 1996
  • For the purpose of study on the printability of domestic art papers, the physical properties of domestic coated paper for offset printing were investigated. 25 kinds of sample papers were prepared and were examined in accordance with KS and TAPPI standard testing method i.e., basis weight, density, opacity, gloss, roughness, smoothness, brightness, and K&N absorption. IGT printability tester was used to obtain the printability parameters, such as maximum ink requirement of paper Y, limiting printing density D print through, and density smoothness constant m value.

  • PDF

Ultrafine ITO Nanoparticle for Ink Jet Printing

  • Hong, Sung-Jei;Kim, Yong-Hoon;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.467-470
    • /
    • 2007
  • Ultrafine Indium tin oxide (ITO) nanoparticle was successfully fabricated by low temperature synthetic method (LTSM). Mean size of ITO nanoparticle is 5 nm, and uniformly dispersed with (222) orientated cubic structure. Using the nanoparticle, ITO thin film with good optical and electrical properties was fabricated by inkjet printing.

  • PDF

3D Printable Composite Materials: A Review and Prospective (3D 프린터용 복합재료 연구 동향)

  • Oh, Eunyoung;Lee, Jinwoo;Suhr, Jonghwan
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.192-201
    • /
    • 2018
  • The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs and it is emerging as the next generation key of manufacturing. Due to the intrinsically limited mechanical/electrical properties and functionalities of printed pure polymer parts, there is a critical need to develop 3D printable polymer composites with high performance. This article gives a review on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the various fields.

3D-printing-based Combinatorial Experiment for Al-Si-Cu-Mg Alloys (금속 3D 프린팅 적층 제조 공정 기반 Al-Si-Cu-Mg 합금 조합 실험)

  • Song, Yongwook;Kim, Jungjoon;Park, Suwon;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.233-239
    • /
    • 2022
  • Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.

The Recent Tendency of Fashion Textiles by 3D Printing (3D프린팅을 이용한 텍스타일 제조 기술동향)

  • Kim, Seul Gi;Kim, Hye Rim
    • Fashion & Textile Research Journal
    • /
    • v.20 no.2
    • /
    • pp.117-127
    • /
    • 2018
  • As an application and potential of 3D printing (3DP) accelerates in diverse industries, the use of 3DP is also increasing in the textile and fashion industry. Since the fashion trend is rapidly changing and there are high demands of customized products for customer segments, research on manufacturing of 3DP textiles has become more important. 3DP textiles have different physical and chemical properties depending on a various 3D printing technologies or materials. However, it is difficult to fabricate 3DP textiles that meets demand of garment such as flexibility, wearability, tensile strength and abrasion resistance so that 3DP in fashion industry relatively has a narrow range of applications compared to other industries. The aim of this paper is to provide a trend of research about manufacturing 3DP textiles by analyzing previous studies according to textile's properties. This paper classifies the five types of 3DP textiles and analyses systematically. First, 3DP textiles blended with existing textiles. Second, 3DP textiles utilizing the structural design of existing textiles. Third, 3DP textiles designed with continuous units. Fourth, 3DP textiles utilizing material properties. Fifth, 3DP textiles based on smart materials. Based on this analysis, future research of manufacturing 3DP textiles needs are identified and discussed.

A Study on the Development of Persimmon Juice Dyed Print-fabrics following the Printing Method and a Comparative Study of the Products' Properties (감즙염색포의 날염방법에 따른 문양직물의 개발과 그 특성에 관한 연구)

  • Park, Soon-Ja
    • The Korean Journal of Community Living Science
    • /
    • v.23 no.3
    • /
    • pp.317-328
    • /
    • 2012
  • In this study, printing was introduced to the common dip-dyeing method of persimmon juice dyeing so as to develop two different colored persimmon juice dyed fabrics with printings of 'jorangmal' patterns (a national monument) instead of producing a plain textile. Following are the results of a comparative study between the persimmon dyed fabric and undyed fabric, both with printings, in terms of its properties, and hand values. Cotton and rayon were chosen as samples and were compared separately. Firstly, the samples showed differences in terms of clarity and visual sensation depending on the presence of persimmon dye, even if the same pattern and color was used. Secondly, the air permeability of two samples improved after persimmon dyeing even though their thickness increased, and their moisture regain increased as well in all humidity conditions. Thirdly, protectiveness against UV increased in dyed samples, and sweat, sunlight, and compound colorfastness improved in printed dye-fabrics compared to plain dyed ones. Therefore, printing proved to be effective in preventing discoloration. Fourthly, tensile linearity and resilience, bending rigidity, compressive linearity and resilience, and shearing stiffness increased more in the dyed samples compared to undyed ones. However, shearing recovery decreased in both dyed fabrics. Fifthly, the result of its hand value showed that Koshi value increased in all samples than undyed ones, whereas Fukurami, Numeri, and Softosa values decreased. Incorporating printing in persimmon dyeing process could expect creative outcomes not only in today's diverse fashion but in areas of arts or crafts as well.

Comparison between mechanical properties and biocompatibility of experimental 3D printing denture resins according to photoinitiators (광개시제에 따른 실험용 3D 프린팅 의치상 레진의 기계적 성질과 생체적합성 비교)

  • Park, Da Ryeong;Son, Ju lee
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.355-361
    • /
    • 2020
  • Purpose: In this study, we added two kinds of photoinitiators (CQ and TPO) to prepare two kinds of denture base resins (Bis-GMA series and UDMA series) for three-dimensional (3D) printing to compare and analyze their mechanical and biological properties and to find the optimal composition. Methods: Control specimens were made using the mold made of polyvinyl siloxane of the same size. Light curing was performed twice for 20 seconds on both the upper and lower surfaces with LED (light emitting diode) light-curing unit (n=10). Experimental 3D printing dental resins were prepared, to which two photoinitiators were added. Digital light processing type 3D printer (EMBER, Autodesk, CA, USA) was used for 3D printing. The specimen size was 64 mm×10 mm×3.3 mm according to ISO 20795-1. The final specimens were tested for flexural strength and flexural modulus, and MTT test was performed. Furthermore, one-way analysis of variance was performed, and the post-test was analyzed by Duncan's test at α=0.05. Results: The flexural strength of both Bis-GMA+CQ (97.12±6.47 MPa) and UDMA+TPO (97.40±3.75 MPa) was significantly higher (p<0.05) in the experimental group. The flexural modulus in the experimental group of UDMA+TPO (2.56±0.06 GPa) was the highest (p<0.05). MTT test revealed that all the experimental groups showed more than 70% cell activity. Conclusion: The composition of UDMA+TPO showed excellent results in flexural strength, flexural modulus, and biocompatibility.

Multifunctional Thin Film Resistors Prepared by ALD for High-Efficiency Inkjet Printheads

  • Kwack, Won-Sub;Kwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.126-126
    • /
    • 2012
  • In past decades, the themal inkjet (TIJ) printer has been widely used as one of the most well-known digital printing technology due to its low cost, and high printing quality. Since the printing speed of TIJ printers are much slower than that of laser printers, however, there has been intensive efforts to raise the printing speed of TIJ printers. One of the most plausible methods to raise the printing speed of TIJ printers is to adopt a page-wide array TIJ printhead. To accomplish this goal, the high efficiency inkjet heating resistor films should be developed to settle the high power consumption problem of a page-wide array TIJ printhead. In this study, we investigated noble metal based multicomponent thin film resistor films prepared by atomic layer deposition (ALD) for a high efficiency inkjet printhead. Design concept, preparation, material properties of noble metal based multicomponent thin films will be discussed in terms of mutlfunctionality.

  • PDF

The Study of Structure Recovery According to the Concentration of the Calcium Carbonate for Emulsified Ink (탄산칼슘 함량에 따른 유화된 잉크의 구조 회복성 변화)

  • Lee, Kyu-Il;Kim, Sung-Bin;Choi, Jung-Byung
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.21 no.2
    • /
    • pp.1-10
    • /
    • 2003
  • The Rheological properties are important factors in printing process. Specially, emulsification phenomenon is a very important factor that decides the quality of printing products in lithography. In this paper, I investigated the flow characteristics depending on calcium carbonate concentration for emulsified inks. By applying the data of this paper, I which to predict quality of printing product in practical printing process.

  • PDF