• 제목/요약/키워드: Printing properties

검색결과 821건 처리시간 0.028초

The Green Cement for 3D Printing in the Construction Industry

  • Park, Joochan;Jung, Euntae;Jang, Changsun;Oh, Chaewoon;Shin, Kyung Nam
    • 에너지공학
    • /
    • 제29권3호
    • /
    • pp.50-56
    • /
    • 2020
  • Currently, 3D printing technology is a new revolutionary additive manufacturing process that can be used for making three dimensional solid objects from digital films. In 2019, this 3D printing technology spreading vigorously in production parts (57%), bridge production (39%), tooling, fixtures, jigs (37%), repair, and maintenance (38%). The applications of 3D printing are expanding to the defense, aerospace, medical field, and automobile industry. The raw materials are playing a key role in 3D printing. Various additive materials such as plastics, polymers, resins, steel, and metals are used for 3D printing to create a variety of designs. The main advantage of the green cement for 3D printing is to enhance the mechanical properties, and durability to meet the high-quality material using in construction. There are several advantages with 3D printing is a limited waste generation, eco-friendly process, economy, 20 times faster, and less time-consuming. This research article reveals that the role of green cement as an additive material for 3D printing.

Study of the mechanical properties and effects of particles for oxide dispersion strengthened Zircaloy-4 via a 3D representative volume element model

  • Kim, Dong-Hyun;Hong, Jong-Dae;Kim, Hyochan;Kim, Jaeyong;Kim, Hak-Sung
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1549-1559
    • /
    • 2022
  • As an accident tolerant fuel (ATF) concept, oxide dispersion strengthened Zircaloy-4 (ODS Zry-4) cladding has been developed to enhance the mechanical properties of cladding using laser processing technology. In this study, a simulation technique was established to investigate the mechanical properties and effects of Y2O3 particles for the ODS Zry-4. A 3D representative volume element (RVE) model was developed considering the parameters of the size, shape, distribution and volume fraction (VF) of the Y2O3 particles. From the 3D RVE model, the Young's modulus, coefficient of thermal expansion (CTE) and creep strain rate of the ODS Zry-4 were effectively calculated. It was observed that the VF of Y2O3 particles had a significant effect on the aforementioned mechanical properties. In addition, the predicted properties of ODS Zry-4 were applied to a simulation model to investigate cladding deformation under a transient condition. The ODS Zry-4 cladding showed better performance, such as a delay in large deformation compared to Zry-4 cladding, which was also found experimentally. Accordingly, it is expected that the simulation approach developed here can be efficiently employed to predict more properties and to provide useful information with which to improve ODS Zry-4.

Calendering 조건 변화에 따른 인쇄용지의 인쇄적성에 관한 연구 (A Study on the Printability of Printing Paper according to the Changing of Calendering Condition)

  • 권영종;윤종태;하영백
    • 한국인쇄학회지
    • /
    • 제23권2호
    • /
    • pp.25-43
    • /
    • 2005
  • Generally, machine calendering are used change of paper surface properties. During machine calendering, dry paper passes between the rolls under pressure, thereby improving the surface smoothness and gloss. These improvements make the paper better suited for printing and decreasing problems during the printing, such as delayed dry and set-off. Then we investigated newspaper properties by the changing of machine calendering condition, and relationship printability. Properties of each samples were examined in accordance with KS and TAPPI standard test method i.e, basic weight, bulk density, thickness, porosity, opacity, brightness, smoothness and roughness. IGT printability tester was used to obtain ink requirement of newspaper, printed density and set-off. Results of in this study, we have proposed the optimizes range of newspaper calendering condition. Useful optimize calendering condition was pressure 55 kN/m, temperature $130^{\circ}C$.

  • PDF

Structural Properties of PZT(80/20) Thick Films Fabricated by Screen Printing Method

  • Lee, Sung-Gap;Lee, Young-Hie
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권2호
    • /
    • pp.35-38
    • /
    • 2005
  • Pb(Zr$_{0.8}$Ti$_{0.2}$)O$_{3}$ powders, prepared by the sol-gel method, were mixed with an organic vehicle and the PZT thick films were fabricated by the screen-printing techniques on Pt/Ah03 substrates. The structural properties were examined as a function of sintering temperature. The particle size distribution of the PZT powder derived from the sol-gel process is uniform with the mean particle size of about 2.6 m. As a result of the DTA, the formation of the polycrystalline perovskite phase was observed at around $890^{circ}$CC. In the X-ray diffraction analysis, all PZT thick films showed a perovskite polycrystalline structure without a pyrochlore phase. The perovskite crystallization temperature of PZT thick films was about $890^{circ}$C. The average thickness of the PZT thick films was approximately 80-90 m.

FDM 3D 프린팅 기술로 제작된 3D 프린팅 레이스/보일 복합직물의 역학적 특성 및 세탁성 평가 (Evaluation of Mechanical Properties and Washability of 3D Printed lace/voil Composite Fabrics Manufactured by FDM 3D printing Technology)

  • 이선희
    • 한국의류산업학회지
    • /
    • 제20권3호
    • /
    • pp.353-359
    • /
    • 2018
  • In this study, fused deposition modellig(FDM) 3D printing technology has been applied directly to polyester voil fabric to produce 3D printed lace/voil composite fabrics. A stereolithograpy(STL) file with a lace type 3D modelling under the various thickness were prepared and transformed into a g-code file using a g-code generator. The extrusion conditions for FDM 3D printing were controlled by 50mm/s of nozzle speed, $235^{\circ}C$ of nozzle temperature, $40^{\circ}C$ of heating bed temperature. 3D printed lace/voil composite fabriscs manufactured by 3D printing based on FDM using a thermoplactic polyurethane(TPU) filaments were obtained. To evaluate the mechanical properties and washability of the fabricated 3D printed lace/voil composite fabric, KES-FB system test, washing fastness test and dry cleaning resistance test were conducted. As 3D printing thickness increased, KOSHI, NUMERI, and FUKURAMI of 3D printed lace/voil composite fabric increased. From the results of the primary hand value test, 3D printed lace/voil composite fabrics were confirmed to be applicable to women's summer garments. As a result of the washability and dry cleaning resistance test of the 3D printed lace/voil composite fabrics, all samples were graded 4-5.

Exploring Thermoelectric Transport Properties and Band Parameters of n-Type Bi2-xSbxTe3 Compounds Using the Single Parabolic Band Model

  • Linh Ba Vu;Soo-ho Jung;Jinhee Bae;Jong Min Park;Kyung Tae Kim;Injoon Son;Seungki Jo
    • 한국분말재료학회지
    • /
    • 제31권2호
    • /
    • pp.119-125
    • /
    • 2024
  • The n-type Bi2-xSbxTe3 compounds have been of great interest due to its potential to achieve a high thermoelectric performance, comparable to that of p-type Bi2-xSbxTe3. However, a comprehensive understanding on the thermoelectric properties remains lacking. Here, we investigate the thermoelectric transport properties and band characteristics of n-type Bi2-xSbxTe3 (x = 0.1 - 1.1) based on experimental and theoretical considerations. We find that the higher power factor at lower Sb content results from the optimized balance between the density of state effective mass and nondegenerate mobility. Additionally, a higher carrier concentration at lower x suppresses bipolar conduction, thereby reducing thermal conductivity at elevated temperatures. Consequently, the highest zT of ~ 0.5 is observed at 450 K for x = 0.1 and, according to the single parabolic band model, it could be further improved by ~70 % through carrier concentration tuning.

스크린 프린팅법으로 제작한 PZT후막의 강유전 특성 (The Ferroelectric properties of PZT thick film by preparation Screen Printing)

  • 강정민;조현무;이성갑;이상헌;이영희;배선기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.656-658
    • /
    • 2004
  • Pb$(Zr_{0.8}Ti_{0.2})TiO_3$ powder were prepared by the sol-gel method using a solution of Pb-acetate, Zr n-propoxide and Ti iso-propoxide. PZT thick film were fabricated by the screen printing method, and the structural and ferroelectric properties asafunting of the sintering temperature were studied. PZT film thickness, obtained by four screen printing, was approximately $70\sim90{\mu}m$. The relative dielectric constant and the dielectric loss of the PZT thick film sintered at $1050^{\circ}C$t were approximately 676 and 1.4%, respectively. The remanent polarization and the coercive field of the PZT thick film sintered at $1050^{\circ}C$ were $21.15{\mu}C/cm^2$ and 10.1 kV/cm, mapetively

  • PDF

A Comparative Study of Recognition Rate of Color QR Code Printed on Tyvek and Cotton Material

  • Park, Suhrin
    • 패션비즈니스
    • /
    • 제21권3호
    • /
    • pp.14-28
    • /
    • 2017
  • This purpose of this study to analyze effect material properties have on change in QR code recognition rate according to change of materials by comparing recognition rate of color QR code. QR code applied to textile materials has the advantage of being washable and being applicable to lost child prevention goods or clothes or a person with dementia through record of information relating to the material or input of additional information, differently from QR code printed on the conventional paper. An effective method of entering QR code in textile materials is Digital Textile Printing(DTP), that facilitates printing by rapidly applying diverse information, and small quantity production. It is possible to tailor various QR codes according to use. Regarding samples to use, cotton material used in clothing products and Tyvek material recently applied to clothing and related products were selected. Reactive dyes were used for cotton, pigment was used for Tyvek, and QR code was printed with an inkjet printer by direct printing method. Printing methods and surface textures are different between cotton and Tyvek. It was revealed that consequent print results and results of recognition rate were different. Regarding color to be printed, 2015 S/S - 2017 S/S color presented by Pantone was used. Color combination affected recognition rate of color QR code. Understanding color combination, material properties and print characteristics may be helpful in increasing recognition rate of color QR code, and may contribute to usability of color QR code applied to textile materials in the future.

Heat-set 윤전 잉크의 유화가 인쇄 적성에 미치는 영향 (The Effects of the Heat-set web Ink Emulsification on Printability)

  • 하영백;최재혁;이원재;오성상
    • 한국인쇄학회지
    • /
    • 제28권2호
    • /
    • pp.31-44
    • /
    • 2010
  • Ever since the introduction of offset lithography, an operator have looked for ways to improve the process by reducing need for dampening solution. Lithography like off-set printing is processed using the repellent properties between water and oil, so all inks for lithography printing must work with dampening solution. The dampening solution may cause the emulsification of ink by the printing pressure in the printing nip. Emulsified ink changed viscosity, tack and causes problems such as bad transfer, uniform density and printed mottle. For a high quality web printing, we studied the effect of emulsified heat-set web inks on the printability, such as amount of ink transfer, printed density and uniformity. For this study, we were carried out by using IGT printability tester C1. For determination of ink properties using the spread meter and Thwing Albert Ink-o-meter, and using the densitometer and image analysis for printed quality determination. The experimental results of this study, we look forward to can be used as the basis for improve of the web print quality.

MWCNTs 기반 인쇄형 압력감응잉크의 제조 조건 최적화 (Optimization of Manufacturing Conditions of Pressure-Sensitive Ink Based on MWCNTs)

  • 박성철;이인환;배용환;김호찬
    • 한국기계가공학회지
    • /
    • 제18권8호
    • /
    • pp.1-7
    • /
    • 2019
  • Materials that can be used for 3D printing have been developed in terms of phase and functionality. Materials should also be easily printed with high accuracy. In recent years, the concept of 4D printing has been extended to materials whose physical properties such as shape or volume can change depending on the environment. Typically, such high-performance 3D printing materials include bio-inks and inks for sensors. This study deals with the optimization of the manufacturing method to improve the functional properties of the pressure sensitive material, which can be used as a sensor based on change of the resistance according to the pressure. Specifically, the number of milling for dispersion, the ratio of hardener for controlling elasticity, and the content of MWCNTs were optimized. As a result, a method of manufacturing a highly sensitive pressure-sensitive ink capable of use in 3D printing was introduced.