• Title/Summary/Keyword: Printing Process

Search Result 1,222, Processing Time 0.029 seconds

Effect of Kinetically Processing Conditions on Ink Transfer Ratio for Transfer Printing

  • Park, Sung-Ryool;Kim, Se-Min;Ryu, Gi-Seong;Lee, Chang-Bin;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.910-913
    • /
    • 2009
  • This paper examines attaching speed, detaching speed and contact time which affected in the ink transfer ratio and presents the best conditions for fabrication process of electrodes with Ag-ink using microcontact printing method. In conclusion, it shows the best printing characteristic by two conditions. One of condition is the attaching speed have to within less than 1mm/s and the detaching speed is high velocity as 1000mm/s and the contact time is taken about the minimum time when inking process. Another condition is the attaching speed have to within more than 100mm/s and the detaching speed have to within less than 1mm/s and the contact time is longer than 30second when the printing process. As using these condition and the stamp sized 5cm${\times}$5cm, it was possible for printing equally until $30{\mu}m$ of width. The printed thickness of a electrode was about 300 to 500 nm, the surface roughness was about dozens nm under 50 nm.

  • PDF

A Study on Tensile Strength of the Product According to Humidity During 3D Printing Process (3D프린팅 공정 중 공기 습도에 따른 출력물의 인장 강도에 관한 연구)

  • Lee, Song Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.177-181
    • /
    • 2021
  • Scaffolds protect the sensor in the body. Scaffolds are made of a bioabsorbable polymer. The polymer process is sensitive to humidity. Inside of the 3D printer has been improved to control the humidity. Specimens were produced by injection molding and 3D printer. 3D printed specimens were printed under various humidity conditions. We measured tensile strength of the injection-molded specimen and tensile strength of the 3d printing specimen. We compared tensile strength of the injection-molded specimen and tensile strength of the 3d printing specimen. Tensile strength of the injection-molded specimen is 557 kgf/cm2. We confirmed tensile strength of the specimen was highest at 741 kgf/cm2 when the humidity was 10 %. We confirmed lower the humidity, higher tensile strength of the polymer product.

A Study on Types of 3D Printing Applications and Their Characteristics in Fashion Design (패션디자인의 3D 프린팅 적용 방법과 특성 연구)

  • Lee, Jung Soo
    • Journal of Fashion Business
    • /
    • v.24 no.4
    • /
    • pp.130-143
    • /
    • 2020
  • The development of three-dimensional (3D) printing technology is bringing new innovations to various fields such as health care, architecture, and fashion. 3D printing can be manufactured to suit the size of the consumer's body, modify the design to meet their tastes, and produce small quantities of various products. Therefore, 3D printing in the field of fashion has great potential. The purpose of this study was to investigate various application models of 3D printing for fashion design and analyze their characteristics after developing the fashion garment samples. First, the background of 3D printing was reviewed then, fashion designed by a 3D printing application was analyzed. As a result, four types of 3D printing applications were developed: object-attached, linkage, kinematics, and assembly. The object-attached type was the method of printing 3D material as an object in the intended shape and form and was attached to the garment by sewing. The linkage type referred to printing 3D material in small pieces of certain shapes that could be linked. The kinematics type was structures with hinges that could flex to fit the human body. The assembly type referred to developing 3D materials in female and male pieces such as nuts and bolts. By providing the advantages, disadvantages, trial-and-errors, and challenges of the 3D printing fashion design process, this study contributes to the effective applications and possibilities of future design.

Optimization of Aqueous Nano Ceramic Ink and Printing Characterization for Digital Ink-Jet Printing

  • Kwon, Jong-Woo;Sim, Hee-Seok;Lee, Jong-Heun;Hwang, Kwang-Taek;Han, Kyu-Sung;Kim, Jin-Ho;Kim, Ung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.478-483
    • /
    • 2017
  • The advantage of ceramic ink-jet printing technology is the accurate and fast printing process of digital images for various products. For digital ink-jet printing applications, ceramic ink requires proper viscosity and surface tension, along with dispersion stability of the inorganic pigments. The purpose of this study is the formulation of an environment-friendly ceramic ink with a water-based system; using nano-sized $CoAl_2O_4$ pigment as a raw material, ink should have dispersion stability to prevent nozzle clogging during ink-jet printing process. In addition, the surface tension of the ceramic ink was optimized with the polysiloxane surfactant according to the surface tension requirement (20 - 45 mN/m) for ceramic ink-jet printing; by adjusting the viscosity with poly ethylene oxide, jetting behavior of the ceramic ink was investigated according to changes in the physical features through drop watcher measurement.

Analysis of Ink Transfer for R2R Printing Process with High Speed Operation and Complex Roll Patterns (고속 웹 이송속도 및 복잡한 롤 패턴 형상을 고려한 R2R공정에서의 잉크전달 특성 해석)

  • Kim, Kyung-Hun;Kim, So-Hee;Na, Yang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.55-60
    • /
    • 2010
  • Ink transfer process from the printing roll to the moving web was investigated using a CFD technique for the application in R2R printed electronics. In line with the requirement that the web handling speed needs to be increased further for the cost competitiveness, the effects of web moving velocity with relatively complex roll patterns were analyzed. To make the present analysis more realistic, the numerical geometry and the ink properties were selected to match those of the real printing production system. Our numerical results showed that both web handling speed and complex printing-roll patterns influenced the shape of the transferred ink. As the web moving speed approaches towards 30mpm, a significant distortion of the shape of the transferred ink occurred. In the range of pattern width smaller than 100 microns, a phase distortion was also found to occur in all the printing-roll patterns considered in the present work but the ratio of the phase distortion to the line width gets smaller as the width becomes smaller. Thus, the web handling speed and the shape of printing-roll pattern will be important elements for the better printing quality under 100 micron line width range.

Fabrication of Ceramic 3D Integration Technology for Ink-jet Printing (Ink-jet Printing을 이용한 3D-Integration 구현)

  • Hwang, Myung-Sung;Kim, Ji-Hoon;Kim, Hyo-Tae;Yoon, Young-Joon;Kim, Jong-Hee;Moon, Joo-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.332-332
    • /
    • 2010
  • We have successfully demonstrated the inkjet printing method to create $Al_2O_3$ films withouWe have successfully demonstrated the inkjet printing method to create $Al_2O_3$ films without a high temperature sintering process. In order to remove the coffee ring effect in the ink drop, we have introduced a co-solvent system in order to create Marangoni flow in the ink drop, which leads to the dense packing of ceramic powders on the substrate during inkjet process. The packing density of the Inkjet-printed $Al_2O_3$ films is around 60% (max. 70%) which is very high compared to the value obtained from the same material films by other conventional methods such as film casting, dip coating process, etc. The voids inside the films (which are around 40% of the entire film volume) are filled with the polymer resin (Cyanate ester) by the infiltration process. This resin infiltration is also implemented by the inkjet printing process right after the Ah03 film ink-jetting process. The microstructures of the printed $Al_2O_3$ films are investigated by Scanning Electron Microscope (SEM) to understand the degree of packing density in the printed films. The inkjet-printed $Al_2O_3$ films have been characterized to investigate its thickness and roughness. Quality factor of the printed $Al_2O_3$ film is also measured to be over 300 at 1MHz.

  • PDF

An Algorithm for the Removing of Offset Loop Twists during the Tool Path Generation of FDM 3D Printer (FDM 3D 프린팅의 경로생성을 위한 옵?루프의 꼬임제거 알고리즘)

  • Olioul, Islam Md.;Kim, Ho-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • Tool path generation is a part of process planning in 3D printing. This is done before actual printing by a computer rather than an AM machine. The mesh geometry of the 3D model is sliced layer-by-layer along the Z-axis and tool paths are generated from the sliced layers. Each 2-dimensional layer can have two types of printing paths: (i) shell and (ii) infill. Shell paths are made of offset loops. During shell generation, twists can be produced in offset loops which will cause twisted tool paths. As a twisted tool path cannot be printed, it is necessary to remove these twists during process planning. In this research, An algorithm is presented to remove twists from the offset loops. To do so the path segments are traversed to identify twisted points. Outer offset loops are represented in the counter-clockwise segment order and clockwise rotation for the inner offset loop to decide which twisted loop should be removed. After testing practical 3D models, the proposed algorithm is verified to use in tool path generation for 3D printing.

Computer Aided Process Planning for 3D Printing

  • Park, Hong-Seok;Tran, Ngoc-Hien
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.148-154
    • /
    • 2015
  • Computer aided process planning (CAPP) keeps an important role between the design and manufacturing engineering processes. A CAPP system is a digital link between a computer aided design (CAD) model and manufacturing instructions. CAPP have been researched and applied in manufacturing filed, however, one manufacturing area where CAPP has not been extensively researched is rapid prototyping (RP). RP is a technique for creating directly a three dimensional CAD data into a physical prototype. RP enables to build physical models automatically and to use to reduce the time for the product development cycle as well as to improve the final quality of the designed product. Three-dimensional (3D) printing is one kind of RP that creates three-dimensional objects from CAD models. The paper presents a computer aided process planning system for printing medical products. 3D printing has been used to solve complex medical problems such as surgical instruments, bioengineered products, medical implants, and surgical guides.

Maskless Screen Printing Process using Solder Bump Maker (SBM) for Low-cost, Fine-pitch Solder-on-Pad (SoP) Technology

  • Choi, Kwang-Seong;Lee, Haksun;Bae, Hyun-Cheol;Eom, Yong-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.65-68
    • /
    • 2013
  • A novel bumping process using solder bump maker (SBM) is developed for fine-pitch flip chip bonding. It features maskless screen printing process. A selective solder bumping mechanism without the mask is based on the material design of SBM. Maskless screen printing process can implement easily a fine-pitch, low-cost, and lead-free solder-on-pad (SoP) technology. Its another advantage is ternary or quaternary lead-free SoP can be formed easily. The process includes two main steps: one is the thermally activated aggregation of solder powder on the metal pads on a substrate and the other is the reflow of the deposited powder on the pads. Only a small quantity of solder powder adjacent to the pads can join the first step, so a quite uniform SoP array on the substrate can be easily obtained regardless of the pad configurations. Through this process, an SoP array on an organic substrate with a pitch of 130 ${\mu}m$ is, successfully, formed.

A Preliminary Study on the Application of Three-Dimensional (3D) Printing Technologies to Hot Bulk Forming Processes - Example of Preform Design and Investigation of Hot-working Tool Steel Deposited Surface (3 차원 프린팅 기술의 열간 체적 성형 공정 적용에 관한 기초 연구 - 예비형상 설계 예 및 열간 금형강으로 적층된 표면 특성 분석)

  • Ahn, Dong-Gyu;Kim, Se-Hun;Lee, Ho-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1093-1100
    • /
    • 2014
  • The goal of this paper is to investigate preliminary the applicability of 3D printing technologies for the development of the hot bulk forming process and die. 3D printing technology based on the plastic material was applied to the preform design of the hot forging process. Plastic hot forging dies were fabricated by Polyjet process for the physical simulation of the workpiece deformation. The feasibility of application of Laser-aided Direct Metal Rapid Tooling (DMT) process to the fabrication of the hot bulk metal forming die was investigated. The SKD61 hot-working tool steel was deposited on the heat treated SKD61 using the DMT process. Fundamental characteristics of SKD 61 hot-working tool steel deposited specimen were examined via hardness and wear experiments as well as the observation of the morphology. Using the results of the examination of fundamental characteristics, the applicability of the DMT process to manufacture hot bulk forming die was discussed.