• 제목/요약/키워드: Printing%2C Three-dimensional

검색결과 9건 처리시간 0.025초

3 차원 곡면에 정밀 인쇄를 위한 공정 변수에 따른 이미지 보정에 관한 연구 (A study of correction dependent on process parameters for printing on 3D surface)

  • 송민섭;김효찬;이상호;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.749-752
    • /
    • 2005
  • In the industry, three-dimensional coloring has been needed for realistic prototype from rapid prototyping. Z-corporation developed a 3D printer which provides three-dimensional colored prototype. However, the existing process cannot be adopted to models from other rapid prototyping process. In addition, time and cost for manufacturing colored prototype still remain to be improved. In this study, a new coloring process using ink-jet head is proposed for color printing on three-dimensional prototype surface. Process parameters such as the angle and the distance between ink-jet nozzle and the three-dimensional surface should be investigated from experiments. The correction matrix according to sloped angle to minimize the distortion of 2D image was proposed by analysis of printing error. Therefore, approximated method for angle and discrete length according to the radius of curvature for printing on the curved surface was proposed. By printing image on the doubly curved surface, the method was verified. As a practical example, helmet was chosen for printing images on the curved surface. The character images were applied with approximated method for angle and discrete length and was printed on the helmet surface.

  • PDF

후경화기와 경화시간에 따른 3D 프린팅 레진의 굴곡강도 평가 (Evaluation of Flexural Strength of 3D Printing Resin According to Post-Curing Equipment and Time)

  • 김해봄;최재원
    • 한국산업융합학회 논문집
    • /
    • 제26권4_2호
    • /
    • pp.629-637
    • /
    • 2023
  • This study aimed to evaluate the effect of post-curing equipment and time on the flexural strength of 3D printing resins produced by a liquid crystal display(LCD) printer. The three 3D printing resins(DENTCA Denture Teeth, DT; C&B 5.0 hybrid, CH; C&B Permanent A2, CP) were divided into four groups according to post-curing time(10 min and 30 min) and equipment with or without vacuum treatment. For the three-point flexural strength test and biaxial strength test were prepared by method according to ISO 10477, ISO 6872, respectively. Flexural strength was measured with universal testing machine. Comparison between post-curing time of each post-curing equipment was analyzed by independent sample t-test and Mann-Whitney U test(α=.05), and comparison between groups according to each 3D printing resin was performed by Kruskal-Wallis test and post-hoc by Bonferroni-Dunn test(α=.05). The flexural strength of the resin post-curing under vacuum was higher than that of the resin post-curing in air. In the comparison according to the post-curing time, in the case of the post-curing equipment without vacuum, the 30 minute curing time showed significantly higher flexural strength than the 10 minute curing time, except for the biaxial flexural strength of CH(P<.05). In the post-curing equipment with vacuum, the three-point flexural strength of all 3D printing resins(DT, CH, and CP) showed a higher value at 30 minute curing time than at 10 minute curing time.

셀룰로오스 혼방 니트 편포의 착색번아웃 날염복합기술에 관한 연구 (A Study on the Cellulose Blend Knit Fabrics using Burn-out Printing Convergence Technology)

  • 조호현;정명희;이종렬
    • 한국의상디자인학회지
    • /
    • 제16권4호
    • /
    • pp.229-235
    • /
    • 2014
  • This study conducted a research on burn-out printing convergence technology for cellulose blend knit fabrics. Printing technology, which forms color pattern on the fabric, can be generally classified into four according to printer or printing method, e.g. screen printing, roller printing, rotary printing, digital printing. However, these printing methods are flat in design or pattern, which have limitation to overcome monotonousness of fabric, so that recently burn-out process method, which expresses three-dimensional pattern effect by treating chemical on the surface of fabric as the method to appeal its esthetics to the customers. Particularly, in case of cellulose/polyester composite material, first, it is proceeded in 2 processes, by dyeing cellulose or polyester fabric and burning out cellulose fabric, in this process, due to pollution caused by disperse dye migration, color of polyester fabric part could be discolored, which has high falt risk. This research considered coloring burn-out technique, which simultaneously proceed dyeing and burn-out by reducing dyeing and burn-out process to 1 stage, which were proceeded in 2 stages previously. As the research result, it was confirmed that reasonable depth of roller was 0.04~0.06mm in roller printing process, heat treatment condition of burn-out far-infrared radiation was $185^{\circ}C{\times}30m/min$. Color fastness to washing was confirmed to be 4-5 grade, color fastness to rubbing, 3-4 grade, color fastness to light, 4 grade. Also, it was confirmed that energy reduction effect appeared 38.19%, in case of energy cost per yard compared to the existing production, also, 19.74%, in case of production cost.

  • PDF

AC PDP에서 2차원 수치해석을 이용한 Ramp Reset 구동파형에 따른 방전 특성 분석 (The Discharge Characteristic Analysis of a Ramp Reset Waveform Using a 2-Dimensional Numerical Simulation in AC PDP)

  • 박석재;최훈영;서정현;이석현
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권12호
    • /
    • pp.606-615
    • /
    • 2004
  • The discharge characteristics of a ramp reset waveform in the alternating current plasma display panel(ac PDP) were studied using a 2-dimensional numerical simulation. We analyzed the wall charge variation during the reset discharge, address discharge and sustain discharge adopting a ramp reset waveform. Then we investigated the principal parameters for a successful discharge. In this paper, we suggest a new parameter, printing particles' density and its effects on the stability of the ramp discharge. The maximum current flows of the three electrodes during the ramp reset period were decreased with the increase in the priming particles's density which was explained with the wall charge characteristics and the current flow characteristics obtained by a 2-D simulation.

디스펜서 프린팅을 위한 ZrO2 세라믹 잉크의 합성 및 특성 평가 (Synthesis and Characterization of ZrO2 Ceramic Ink for Dispenser Printing)

  • 이지현;황해진;김진호;황광택;한규성
    • 한국재료학회지
    • /
    • 제28권2호
    • /
    • pp.95-100
    • /
    • 2018
  • In this study, $ZrO_2$ ceramic ink was formulated for additive manufacturing three dimensional structure using dispenser printing technique. Ceramic ink with various $ZrO_2$ loading (30, 40, 50vol%) was prepared to evaluate their rheological properties and printability. High $ZrO_2$ loading $ZrO_2$ ceramic ink showed higher elastic modulus and improved shape retention, when the ceramic ink was printed and sintered at $1450^{\circ}C$ for 1h. Microstructural analysis of printed $ZrO_2$ objective indicated that high $ZrO_2$ loading objective showed lower porosity and smaller pore size.

Cervical spine reconstruction after total vertebrectomy using customized three-dimensional-printed implants in dogs

  • Ji-Won Jeon;Kyu-Won Kang;Woo-Keyoung Kim;Sook Yang;Byung-Jae Kang
    • Journal of Veterinary Science
    • /
    • 제25권1호
    • /
    • pp.2.1-2.14
    • /
    • 2024
  • Background: Sufficient surgical resection is necessary for effective tumor control, but is usually limited for vertebral tumors, especially in the cervical spine in small animal neurosurgery. Objective: To evaluate the primary stability and safety of customized three-dimensional (3D)-printed implants for cervical spine reconstruction after total vertebrectomy. Methods: Customized guides and implants were designed based on computed tomography (CT) imaging of five beagle cadavers and were 3D-printed. They were used to reconstruct C5 after total vertebrectomy. Postoperative CT images were obtained to evaluate the safety and accuracy of screw positioning. After harvesting 10 vertebral specimens (C3-C7) from intact (group A) and implanted spines (group B), implant stability was analyzed using a 4-point bending test comparing with groups A and C (reconstituted with plate and pins/polymethylmethacrylate after testing in Group A). Results: All customized implants were applied without gross neurovascular damage. In addition, 90% of the screws were in a safe area, with 7.5% in grade 1 (< 1.3 mm) and 2.5% in grade 2 (> 1.3 mm). The mean entry point and angular deviations were 0.81 ± 0.43 mm and 6.50 ± 5.11°, respectively. Groups B and C significantly decreased the range of motion (ROM) in C3-C7 compared with intact spines (p = 0.033, and 0.018). Both groups reduced overall ROM and neutral zone in C4-C6, but only group B showed significance (p = 0.005, and 0.027). Conclusion: Customized 3D-printed implants could safely and accurately replace a cervical vertebra in dog cadavers while providing primary stability.

수지의 함량 변화에 따른 잉크 비히클의 유변학적 특성에 관한 연구 (A Study for The Effect of Variation of Resin Content on The Rheological Characteristics of Ink Vehicle)

  • 방종관;김성빈;김태환;이규일
    • 한국인쇄학회지
    • /
    • 제23권2호
    • /
    • pp.117-128
    • /
    • 2005
  • Printing inks are basically dispersions of solid pigment particles in a vehicle. Pigment flocculation and/or colloidal aggregates created by thixotrope additives form a three- dimensional network in the inks. This structure complicates the flow behaviour of inks. However, if the internal structure is formed under control, the printing process will benefit from it because the ink must satify rheological requirements over a very wide range of shear conditions. The presence of internal structure results in the following prominent non-Newtonian rheological properties: viscoelasticity, yield stress, shear thinning and thixotropy. If the components of printing inks were changed, the rheological characteristics such as viscosity, yield stress, viscoelasticity and tack value were considerably varied. Thus, in this paper, the effects of changing the content of rosin modified phenolic resin on rheological properties of the vehicle will be studied. For that, the rheological properties were found by flow, yield stress, creep and oscillation measurements using Bohlin C-VOR Rotational Rheometer. And Emulsion rheology and its microstructure will be investigated.

  • PDF

요가용 3차원 무릎보호대 개발 및 평가 (Development of the 3D Knee Protector for Yoga)

  • 정현주;이희란;정인희
    • 한국의류학회지
    • /
    • 제46권4호
    • /
    • pp.657-671
    • /
    • 2022
  • This study aims to develop three dimensional (3D) yoga knee protectors that provide excellent wearing comfort. Three types of pads were modeled using 3D human data: two types of 3.0-cm-wide pads separated into top and bottom with thicknesses of 0.1 cm (TPU-1: A) and 0.2 cm (TPU-2: B); and one type with three 0.2-cm-thick separated panels (TPU-S: C). Based on these models, five knee protectors were developed using 3D patterning and 3D printing. Types A, B, and C were integrated with 0.6-cm neoprene pads. Type D was fabricated with a donut-shaped 0.6-cm neoprene pad inserted, while Type E consisted of two discrete 0.6-cm neoprene pads embedded in the protector's upper and lower sides. Wearing comfort was evaluated in terms of fit, pressure, and cushioning while in a standing and kneeling position and while in motion. The findings suggest that the fabricated knee protectors were evaluated as comfortable to the individuals with knee pain, rather than those without knee pain. The individuals with knee pain preferred the soft pads made of neoprene positioned around the knee (NEO-S: E), while those without knee pain favored the cushioned pads with a pattern structure maintained by thin 3D-printed pads (TPU-1: A).

이산화티타늄 나노입자를 함유한 3D 프린팅 의치상 레진의 항진균성 및 굽힘 강도에 대한 연구 (A study of the antifungal properties and flexural strength of 3D printed denture base resin containing titanium dioxide nanoparticles)

  • 윤석원;조영은
    • 대한치과보철학회지
    • /
    • 제62권2호
    • /
    • pp.95-103
    • /
    • 2024
  • 목적: 디지털 기술이 발전함에 따라 3D 프린팅 기술이 의치상 제작에 활용되고 있으나 적층 제조의 특성상 의치상 표면에 미생물 부착이 증가한다는 단점이 있다. 본 연구는 3D 프린팅 의치상 레진의 항진균성을 개선하기 위하여, 이산화티타늄 나노입자를 각기 다른 중량비로 첨가하였을 때 균사 형태의 Candida albicans에 대한 의치상 레진의 항진균성과 그에 따른 굽힘 강도의 변화에 대해 알아보고자 하였다. 재료 및 방법: 항진균성을 평가하기 위해 3D 프린팅 레진에 이산화티타늄 나노입자를 0.5, 1, 1.5, 2 wt%의 중량비로 혼합하고, 이산화티타늄 나노입자를 포함하지 않은 대조군을 포함해 5개 군을 직경 20 mm 높이 3 mm의 원기둥 형태의 형태로 각각 20개씩 출력하였다. Autogrinder를 이용하여 10개는 연마를 시행하였고, 나머지 10개는 연마를 시행하지 않았다. 각 시편에 균사 형태의 C.albicans를 접종하고, 흡광도와 집락수를 분석하였고, 시편의 표면을 주사전자현미경으로 관찰하였다. 또한, 굽힘 강도 비교를 위해 의치상 레진에 이산화티타늄 나노입자를 0.5, 1, 1.5, 2 wt%의 중량비로 혼합하고, 길이 64 mm, 높이 10 mm, 폭 3 mm 형태(ISO 20795-1)의 시편을 각 군당 20개씩 출력하였고, 만능시험기로 3점 굽힘 강도 시험을 시행하였다. 결과: C.albicans의 집락수와 배양액의 흡광도는 연마를 시행하지 않은 군에서 차이가 없었으나, 연마를 시행한 군에서는 대조군에 비해 감소하였다. 굽힘 강도는 이산화티타늄 나노입자 농도 0, 1, 1.5 wt%에서 증가하였으나 2 wt%에서 1.5 wt%에 비해 감소하였다. 결론: 3D 프린팅 의치상 레진에 이산화티타늄 나노입자를 1.5 wt% 첨가하였을 때, 의치상 레진의 항진균성과 굽힘 강도가 증가하였다.