Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.2.95

Synthesis and Characterization of ZrO2 Ceramic Ink for Dispenser Printing  

Lee, Ji-Hyeon (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology)
Hwang, Hae-Jin (Division of Material Science and Engineering, Inha University)
Kim, Jin-Ho (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology)
Hwang, Kwang-Taek (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology)
Han, Kyu-Sung (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Korean Journal of Materials Research / v.28, no.2, 2018 , pp. 95-100 More about this Journal
Abstract
In this study, $ZrO_2$ ceramic ink was formulated for additive manufacturing three dimensional structure using dispenser printing technique. Ceramic ink with various $ZrO_2$ loading (30, 40, 50vol%) was prepared to evaluate their rheological properties and printability. High $ZrO_2$ loading $ZrO_2$ ceramic ink showed higher elastic modulus and improved shape retention, when the ceramic ink was printed and sintered at $1450^{\circ}C$ for 1h. Microstructural analysis of printed $ZrO_2$ objective indicated that high $ZrO_2$ loading objective showed lower porosity and smaller pore size.
Keywords
additive manufacturing; $ZrO_2$; ceramic ink; dispenser printing; raw material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Denry and J. R. Kelly, Dent. Mater., 24, 299 (2008).   DOI
2 R. H. J. Hannink, P. M. Kelly and B. C. Muddle, J. Am. Ceram. Soc., 83, 461 (2000).
3 C. Piconi and G. Maccauro, Biomaterials, 20, 1 (1999).   DOI
4 P. Calvert and R. Crockett, Chem. Mater., 9, 650 (1997).   DOI
5 L. S. Dimas, G. H. Bratzel, I. Eylon and M. J. Buehler, Adv. Funct. Mater., 23, 4629 (2013).   DOI
6 M. L. Griffith and J. W. Halloran, J. Am. Ceram. Soc., 79, 2601 (1996).
7 K. Liu, H. Sun, Y. Tan, Y. Shi, J. Liu, S. Zhang and S. Huang, Int. J. Adv. Manuf. Technol., 90, 945 (2017).   DOI
8 C. Griffin, J. Daufenbach and S. McMillin, Am. Ceram. Soc. Bull., 73, 109 (1994).
9 S. J. Kalita, S. Bose, H. L. Hosick and A. Bandyopadhyay, Mater. Sci. Eng. C., 23, 611 (2003).   DOI
10 Q. Fu, E. Saiz and A. P. Tomsia, Adv. Funct. Mater., 21, 1058 (2011).   DOI
11 C. R. Tubio, F. Guitian and A. Gil, J. Eur. Ceram. Soc., 36, 3409 (2016).   DOI
12 B. G. Compton and J. A. Lewis, Adv. Mater., 26, 5930(2014).   DOI
13 J. E. Smay, J. Cesarano III and J. A. Lewis, Langmuir, 18, 5429 (2002).   DOI
14 J. C. Conrad, S. R. Ferreira, J. Yoshikawa, R. F Shepherd, B. Y. Ahn and J. A. Lewis, Curr. Opin. Colloid Interface Sci., 16, 71 (2011).   DOI
15 B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers and J. A. Lewis, Science, 323, 1590 (2009).   DOI
16 C. Sun, T. Wu, R. Liu, B. Liang, Z. Tian, E. Zhang and M. Zhang, Food Hydrocolloids, 51, 512 (2015).   DOI
17 A. Pasqua, M. Fleury, A. Brun, M. C. Cristiano and D. Cosco, Advances in Food Safety and Health, 6, 61 (2014).
18 D. Xu, J. Zhang, Y. Cao, J. Wang and J. Xiao, LWTFood Sci. Technol., 66, 590 (2016).
19 K. J. Sim, H. J. Youn, J. E. Ahn, J. G. Lee, H. Y. Lee and Y. H. Jo, J. Korea TAPPI, 46, 46 (2014).
20 Y. D. Hazan, M. Thanert. M. Trunec and J. Misak, J. Eur. Ceram. Soc., 32, 1187 (2012).   DOI