• Title/Summary/Keyword: Printed materials

Search Result 834, Processing Time 0.027 seconds

Mechanical Properties and Wind Energy Harvesting Characteristics of PZT-Based Piezoelectric Ceramic Fiber Composites (PZT계 압전 세라믹 파이버 복합체의 기계적 물성과 압전 풍력 에너지 하베스팅 특성)

  • Lee, Min-Seon;Park, Jin-woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.90-98
    • /
    • 2021
  • Piezoelectric ceramic fiber composite (PCFC) was fabricated using a planar electrode printed piezoelectric ceramic fiber driven in transverse mode for small-scale wind energy harvester applications. The PCFC consisted of an epoxy matrix material and piezoelectric ceramic fibers sandwiched by interdigitated electrode (IDE) patterned polyimide films. The PCFC showed an excellent mechanical performance under a continuous stress. For the fabrication of PCB cantilever harvester, five -PCFCs were vertically attached onto a flexible printed circuit board (PCB) substrate, and then PCFCs were serially connected through a printed Cu circuit. The energy harvesting performance was evaluated applying an inverted structure, which imples its free leading edge located at an open end but the trailing edge at a clamped end, to enhance strain energy in a wind tunnel. The output voltage of the PCB cantilever harvester was increased as the wind speed increased. The maximum output power was 17.2 ㎼ at a resistance load of 200 ㏀ and wind speed of 9 m/s. It is considered that the PCB cantilever energy harvester reveals a potential use for wind energy harvester applications.

A comparison study on shear bond strength of 3D printed resin and conventional heat-cured denture base resin to denture relining materials (3D-프린팅 의치상 레진과 열중합 의치상 레진에서의 의치 첨상 재료 간의 전단결합강도 비교 연구)

  • Cho, Sung-Yoon;Song, Young-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.4
    • /
    • pp.232-243
    • /
    • 2021
  • Purpose: The purpose of this study was to evaluate the shear bond strength of various 3D printed denture base resins and the conventional denture base resin to various denture relining materials. Materials and Methods: For denture base materials, a heatcured (Vertex RS) and two types of 3D printed DENTCA Denture base II, NextDentTM Base) were used. And 4 types denture relining materials (Tokuyama Rebase II fast, Kooliner, Denture Liner, Denture Liner, Lang Jet Denture Repair Kit) with different components were used. It was classified into 12 groups. Adhesion was performed between the resin base and the relining materials in accordance with ISO/TS 11405 standard. The shear bonding strength was measured, and then the adhesion interface was observed with a stereoscopic microscope and a scanning electron microscope. The fracture pattern was investigated through the analysis of the fragment. Results: In the 3D printed denture resin group, the shear bonding strength with relining materials was significantly lower than that of the heat-cured resin group (P < 0.05). The group of polymethyl methacrylate -based relining materials, high shear bonding strength was shown regardless of the type of denture. As for the fracture pattern, adhesive fracture appeared in most groups, and cohesive, mixed fracture appeared in some groups. Conclusion: The polymethyl methacrylate -based denture relining materials showed high shear bonding strength values compared to other denture relining materials. But, for direct methods, it is considered advantageous in terms of shear bonding strength to use a isobutyl methacrylate-based denture relining materials.

Chemically Modified Graphene and Their Hybrid Materials: Toward Printed Electronics

  • Jeong, Seung-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.71-71
    • /
    • 2012
  • Chemically modified graphene has been great interest for the application of printed electronics using solution prossesable technique. Here, we demonstrate a large area graphene exfoliation method with fewer defects on the basal plane by application of shear stress in solution to obtain high quality reduced graphene oxide (RGO). Moreover, we introduce a novel route to preparing highly concentrated and conductive RGO in various solvents by monovalent cation-${\pi}$ interaction. Noncovalent binding forces can be induced between a monopole (cation) and a quadrupole (aromatic ${\pi}$ system). The stability of this RGO dispersion was more sensitive to the strength of the cation-${\pi}$ interactions than to the cation-oxygen functional group interactions. The RGO film prepared without a post-annealing process displayed superior electrical conductivity of 97,500 S/m. Our strategy can facilitate the development of large scalable production methods for preparing printed electronics made from high-quality RGO nanosheets.

  • PDF

Evaluation of Image Quality of Inkjet Printing on the Spun Polyester Fabrics

  • Park, Heung-Sup
    • Textile Coloration and Finishing
    • /
    • v.18 no.5 s.90
    • /
    • pp.61-71
    • /
    • 2006
  • This paper addresses the factors hindering the image quality of lines in inkjet printed on polyester fabric as printing media. Lines were printed onto different types of polyester fabrics in warp and filling directions. Line image quality including line width, edge blurriness, and edge raggedness was assessed. The effect of capillary wicking on line image quality of printed spun polyester fabric is discussed. The factors on the image quality include printing position(top of the yam or between the yarn), printing direction(warp or filling), yarn structures(filament or spun), thread size(yam or fiber), finishing, and ink properties(evaporation rate). More than 30% differences in image quality results were observed by changing the printing location on the spun polyester fabric. The best results of the image quality were obtained with the printed plain and spun polyester fabrics. The fiber sizes may affect capillary size; therefore, the image quality can be dissimilar. Types of finishing materials and inks greatly improve the line image quality on spun polyester fabrics.

Technology Trend of Printed Electronics (인쇄전자 기술동향)

  • You, I.K.;Koo, J.B.;Noh, Y.Y.;Yu, B.G.
    • Electronics and Telecommunications Trends
    • /
    • v.24 no.6
    • /
    • pp.41-51
    • /
    • 2009
  • 인쇄전자(printed electronics) 기술은 인쇄(graphic art printing)가 가능한 기능성전자 잉크소재를 이용하여 초저가격의 프린팅 공정을 통해서 다양한 전자소자를 제작하는 기술로서, 차세대 모바일 IT 기기의 제작에 적합한 전자제품을 생산하는 데 적합한 공정 기술로 인식되고 있다. 현재 기술 수준이 일부 요소 부품을 제작하는 수준에 머무르고 있으나, 여러 가지 잉크소재 및 다양한 초미세 인쇄공정 기술의 개발이 진행됨에 따라 향후 다양한 공정 분야에 적용될 것으로 예상되며, 궁긍적으로 전자제품을 생산하는 기존 반도체 공정을 대체하는 공정으로 자리매김을 할 것으로 예상된다. 특히 인쇄공정 기술은 저온에서 공정이 가능한 기능성 잉크소재들의 개발을 통해서 유연한 플라스틱 기판에 전자소자를 제작하는 플렉시블 전자소자(flexible electronics) 기술과 높은 공정 결합성을 지니고 있으며 이들 공정을 결합하여 향후 연속 공정(roll-to-roll)의 구현이 가능할 것으로 예상된다. 본 기고문에서는 이러한 인쇄전자 기술의 개발동향에 대해서 기술하였다.

Organic Thin-Film Transistors with Screen Printed Silver Source/Drain Electrodes

  • Kim, Sam-Soo;Kim, Min-Soo;Choi, Gyu-Seok;Kim, Heon-Gon;Kim, Yong-Bae;Lee, Dong-Gu;Roh, Jae-Seong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1305-1307
    • /
    • 2007
  • We show that the electrical properties of organic thinfilm transistors(OTFTs) can be enhanced by controlling the morphology of interface between screen printed electrodes and gate dielectrics. Modified surface of the insulator layer($SiO_2$) affect on the interface energy of electrode on $SiO_2$ layer. Contact angle measurement and FT-IR spectrum shows that the interface is properly modified. OTFTs device with high efficiency has been realized through modification of interface layer.

  • PDF

Fabrication Techniques for Carbon Nanotube Field Emitters by Screen Printing

  • Yi, Mann;Jung, Hyuk;Lee, Dong-Gu;Seo, Woo-Suk;Park, Jong-Won;Chun, Hyun-Tae;Koh, Nam-Je
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.655-657
    • /
    • 2002
  • The carbon nanotube emitters for field emission displays were fabricated by screen printing techniques. The pastes for screen printing are composed of organic binders, carbon nanotubes, and some additive materials. Then the pastes were printed on Cr-coated/Ag-printed soda-lime glass substrates. From the I-V characteristics, the turn-on field of SWNT was lower than that of MWNT. The decrease in the mesh size of screen masks resulted in decreasing the turn-on field and increasing the electron emission current. When the carbon nanotubes were mixed with glass frit, glass frit appeared to contribute to the vertically aligning of carbon nanotubes on glass.

  • PDF

Copper Electrode Material using Copper Formate-Bicarbonate Complex for Printed Electronics

  • Hwang, Jaeeun;Kim, Sinhee;Ayag, Kevin Ray;Kim, Hongdoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.147-150
    • /
    • 2014
  • Copper ink has been prepared by mixing copper(II) formate and 2-ethyl-1-hexylammonium bicarbonate (EHABC) to overcome some weak points such as aggregation and degradation of copper nano-type ink. Ink was coated on glass substrate and calcined at $110^{\circ}C$ to $150^{\circ}C$ to generate electrically conductive copper film under two different atmospheres such as nitrogen gas and gaseous mixture of formic acid and methanol. The lowest resistivity of $1.88{\mu}{\Omega}{\cdot}cm$ of copper film was obtained at $150^{\circ}C$ in gaseous formic acid condition. The long-term resistivity shows to increase from $1.88{\mu}{\Omega}{\cdot}cm$ to $2.61{\mu}{\Omega}{\cdot}cm$ after one month.

Designing Education Contents for Chinese Character Utilizing Internet of Things (IoT)

  • Jung, Sugkyu
    • Smart Media Journal
    • /
    • v.5 no.2
    • /
    • pp.24-32
    • /
    • 2016
  • Recently, the development of electronic teaching materials and the demand of digital learners have led the needs on the education contents that replace learning from character information and the change of an information design method for this. Chinese character education in the traditional schooling mainly focuses on writing and memorization (semantic memory). This way that the stories do not exist has brought the learners' recognition that Chinese character is difficult to learn. Meanwhile, for a language study such as English, cross-media development between printed materials and audio-visual materials has been actively introduced. The method that extends episode memories along with memorization through a story is widely used. Therefore, this content suggests a prototype, which is broken away from an existing way of learning Chinese character that mainly focuses on writing, one sided instruction and information cramming. This makes learners learn through a story from printed materials and animation. Furthermore, it suggests a method that extends episode memories through Chinese education contents based on IoT explaining the principle of Chinese character by combining IT technology (information and communications, IoT) and education contents on block toys.

Pyro-metallurgical Treatment of used OA Parts for the Recovery of Valuable Metals (유가금속(有價金屬) 회수(回收)를 위한 PCB 스크랩의 건식처리기술(乾式處理技術))

  • Shin, Dong-Yeop;Lee, Sang-Dong;Jeong, Hyeon-Bu;You, Byung-Don;Han, Jeong-Whan;Jung, Jin-Ki
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.46-54
    • /
    • 2008
  • It is well known that PCB (Printed Circuit Board) is a complex mixture of various metals. In this study, pyro-metallurgical process was investigated to extract valuable metallic components from the PCB scrap. PCB scrap was shredded and oxidized to remove plastic materials, and then, quantitative analysis were made. 15 mass %$Al_2O_3-45$ mass %CaO-40 mass %$SiO_2$ and 32 mass %$SiO_2-20$ mass %$Al_2O_3-38$ mass %CaO-10 mass %MgO, were chosen as basic slag compositions which are determined based on the quantitative analysis of PCB scrap. During experiments a super kanthal rotating furnace was used to melt and separate metallic components. Moreover the revolution effect on was the recovery of valuable metals from PCB scrap also investigated.