Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.1.147

Copper Electrode Material using Copper Formate-Bicarbonate Complex for Printed Electronics  

Hwang, Jaeeun (Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University)
Kim, Sinhee (Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University)
Ayag, Kevin Ray (Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University)
Kim, Hongdoo (Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University)
Publication Information
Abstract
Copper ink has been prepared by mixing copper(II) formate and 2-ethyl-1-hexylammonium bicarbonate (EHABC) to overcome some weak points such as aggregation and degradation of copper nano-type ink. Ink was coated on glass substrate and calcined at $110^{\circ}C$ to $150^{\circ}C$ to generate electrically conductive copper film under two different atmospheres such as nitrogen gas and gaseous mixture of formic acid and methanol. The lowest resistivity of $1.88{\mu}{\Omega}{\cdot}cm$ of copper film was obtained at $150^{\circ}C$ in gaseous formic acid condition. The long-term resistivity shows to increase from $1.88{\mu}{\Omega}{\cdot}cm$ to $2.61{\mu}{\Omega}{\cdot}cm$ after one month.
Keywords
Copper electrode material; Copper formate complex; Printed electronics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kim, H.; Dhage, S. R.; Shim, D.; Hahn, H. T. Appl. Phys. A: Mater. Sci. Process 2009, 4, 791-798.
2 Yung, K. C.; Plura, T. S. Appl. Phys. A: Mater. Sci. Process 2010, 2, 393-397.
3 Kang, J. S.; Kim, H. S.; Ryu, J.; Thomas Hahn, H.; Jang, S.; Joung, J. W. J. Mater. Sci.: Mater. Electron. 2010, 11, 1213-1220.
4 Lee, B.; Kim, Y.; Yang, S.; Jeong, I.; Moon, J. Current Applied Physics 2009, 2, Supplement, e157-e160.
5 Kim, I.; Kim, J. J. Appl. Phys. 2010, 10, 102807/1-102807/5.
6 Okada, K.; Kay, M. I.; Cromer, D. T.; Almodovar, I. J. Chem. Phys. 1966, 4, 1648-1653.
7 Leenen, M. A. M.; Arning, V.; Thiem, H.; Steiger, J.; Anselmann, R. In Printable Electronics: Flexibility for the Future; Section Title: Electric Phenomena; 2009; pp 17-34.
8 Kim, N.; Hwang, S.; Kim, E.; Han, K. N. Jpn. J. Appl. Phys. 2010, 5, Pt. 2, 05EA04/1-05EA04/4.
9 Magdassi, S.; Grouchko, M.; Berezin, O.; Kamyshny, A. ACS Nano 2010, 4, 1943-1948.   DOI   ScienceOn
10 Kobayashi, Y.; Shirochi, T.; Yasuda, Y.; Morita, T. Solid State Sci. 2011, 3, 553-558.
11 Tchoudakov, R.; Breuer, O.; Narkis, M.; Siegmann, A. Polym. Eng. Sci. 1996, 10, 1336-1346.
12 Yabuki, A.; Arriffin, N.; Yanase, M. Thin Solid Films 2011, 19, 6530-6533.
13 Kim, S. J.; Lee, J.; Choi, Y.; Yeon, D.; Byun, Y. Thin Solid Films 2012, 7, 2731-2734.
14 Tang, X.; Yang, Z.; Wang, W. Colloids Surf., A 2010, 1-3, 99-104.
15 Kim, D.; Moon, J. Electrochem. Solid-State Lett. 2005, 11, J30-J33.
16 Lin, J. C.; Chan, J. Y. Mater. Chem. Phys. 1996, 3, 256-265.
17 Zuo, R.; Li, L.; Gui, Z. Ceram. Int. 2000, 6, 673-676.
18 Dang, T. M. D.; Le, T. T. T.; Fribourg-Blanc, E.; Dang, M. C. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2011, 1, 015009/1-015009/6.
19 Lee, Y.; Choi, J.; Lee, K. J.; Stott, N. E.; Kim, D. Nanotechnology 2008, 41, 415604/1-415604/7.
20 Mott, D.; Galkowski, J.; Wang, L.; Luo, J.; Zhong, C. Langmuir 2007, 10, 5740-5745.
21 Wu, S.; Chen, D. J. Colloid Interface Sci. 2004, 1, 165-169.
22 Joo, M.; Lee, B.; Jeong, S.; Lee, M. Thin Solid Films 2012, 7, 2878-2883.