• Title/Summary/Keyword: Printable time-temperature integrator

Search Result 2, Processing Time 0.017 seconds

Printable Time Temperature Integrator Consisting of Oxygen Indicator and Cover Film with Various Oxygen Permeability (다양한 산소 투과도를 가진 커버필름과 산소지시물질로 제작된 인쇄형 TTI)

  • Kim, Do Hyeon;Jang, Han Dong;Han, Seo Hyeon;Ahn, Myung Hyun;Lee, Seung Ju
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • A printable time temperature integrator (TTI) consisting of oxygen indicator and cover films with various oxygen permeability was developed. The printing ink contained methylene blue (oxygen indicator) which changed in color during storage. $TiO_2$ and glycerol for UV-activation of TTI and zein and ethanol for printing performance were also contained in the printing ink. The cover film on the ink was employed to control the color change rate and temperature dependency (Arrhenius activation energy, $E_a$) by using the different films (PE, PET, OPP, and LLDPE). The film properties were varied by annealing. TTI was produced by silk screen printing. As a result, the color change rates were different for the cover films, being the highest in TTI with LLDPE, followed by OPP, PE, and PET. The rate decreased with increase in the cover film thickness. The $E_a$ was the highest in TTI with LLDPE, followed by OPP, PE, and PET. The $E_a$ did not change with the cover film thickness. The annealed PVC and PET film were lower in oxygen permeability than the unannealed ones, indicating the lower color change rate.

A Novel Printable Time-temperature Integrator with Anthocyanidin, a Natural Coloring Matter (천연 색소인 안토시아니딘 기반의 인쇄형 시간-온도이력 지시계 개발)

  • Jang, Han Dong;Yang, Jung Hwa;Kim, Do Hyeon;Ahn, Myung Hyun;Han, Seo Hyeon;Lee, Seung Ju
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.2
    • /
    • pp.49-56
    • /
    • 2018
  • A novel printable time-temperature integrator (TTI) composed of a natural coloring matter, anthocyanidin, was developed. The anthocyanin was biochemically modified to change in color over week scale, compared to the original anthocyanin over month scale change. The anthocyanin extracted from strawberry was converted to its aglycone, anthocyanidin, by the treatment with ${\beta}-glucosidase$. The print paste was composed of the freeze-dried powder of anthocyanidin, pullulan, glycerol and distilled water, which was screen-printed. The TTI performance were examined in terms of kinetics and temperature dependency. The activation energy of anthocyanidin TTI was 86.92 kJ/mol. Compared with the activation energy of foods, the applicable food groups were found. Applicable food groups were chilled meat products and fish. The major benefits of the TTI were the printability to be practical in use and the eco-friendliness with the natural pigment.