DOI QR코드

DOI QR Code

A Novel Printable Time-temperature Integrator with Anthocyanidin, a Natural Coloring Matter

천연 색소인 안토시아니딘 기반의 인쇄형 시간-온도이력 지시계 개발

  • Jang, Han Dong (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul) ;
  • Yang, Jung Hwa (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul) ;
  • Kim, Do Hyeon (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul) ;
  • Ahn, Myung Hyun (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul) ;
  • Han, Seo Hyeon (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul) ;
  • Lee, Seung Ju (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul)
  • 장한동 (동국대학교 식품생명공학과, 지능형포장센터) ;
  • 양정화 (동국대학교 식품생명공학과, 지능형포장센터) ;
  • 김도현 (동국대학교 식품생명공학과, 지능형포장센터) ;
  • 안명현 (동국대학교 식품생명공학과, 지능형포장센터) ;
  • 한서현 (동국대학교 식품생명공학과, 지능형포장센터) ;
  • 이승주 (동국대학교 식품생명공학과, 지능형포장센터)
  • Received : 2018.04.25
  • Accepted : 2018.07.13
  • Published : 2018.08.31

Abstract

A novel printable time-temperature integrator (TTI) composed of a natural coloring matter, anthocyanidin, was developed. The anthocyanin was biochemically modified to change in color over week scale, compared to the original anthocyanin over month scale change. The anthocyanin extracted from strawberry was converted to its aglycone, anthocyanidin, by the treatment with ${\beta}-glucosidase$. The print paste was composed of the freeze-dried powder of anthocyanidin, pullulan, glycerol and distilled water, which was screen-printed. The TTI performance were examined in terms of kinetics and temperature dependency. The activation energy of anthocyanidin TTI was 86.92 kJ/mol. Compared with the activation energy of foods, the applicable food groups were found. Applicable food groups were chilled meat products and fish. The major benefits of the TTI were the printability to be practical in use and the eco-friendliness with the natural pigment.

인쇄형 TTI의 잉크로 천연물질인 안토시아닌의 적용 가능성을 확인하기 위해 실제 인쇄형 TTI를 제작하여 색 변화를 확인하였다. 안토시아닌은 반응속도가 느려 TTI에 적용이 어렵다. 이를 해결하기 위해 ${\beta}$-글루코시다아제를 이용하여 안토시아닌의 탈당화를 유도하여 보다 불안정한 안토시아니딘 잉크를 제작하였다. 그리고 인쇄형 TTI로 제작이 적합한지 확인하기 위해 인쇄적성을 확인하고 적용가능한 식품군을 탐색하였다. 실험결과, 인쇄적성의 경우, 틱소트로피의 히스테리시스 성질을 나타내어 인쇄적성이 적합한 것으로 확인되었다. 색 변화의 경우, 같은 온도와 pH 조건 하에서 안토시아닌 TTI의 색 변화 속도보다 안토시아니딘 TTI의 색 변화속도가 빠른 것을 확인할 수 있었다. 또한, 안토시아닌 인쇄형 TTI의 활성화 에너지는 65.21 kJ/mol, 안토시아니딘 인쇄형 TTI의 활성화 에너지는 86.92 kJ/mol로 확인되었다. 이는 ${\beta}$-글루코시다아제를 처리한 안토시아닌의 탈당화가 안토시아닌의 반응속도를 빠르게 할 뿐만 아니라, 활성화 에너지도 증가시킨 것으로 사료된다. TTI의 활성화 에너지와 식품의 활성화 에너지를 비교한 결과, 안토시아닌 TTI는 냉장 육제품에 한정적으로 적용 가능하였다. 반면에 안토시아니딘 TTI는 냉장 육제품과 냉장 어류에 적용 가능하였다. 하지만, 안토시아닌 TTI는 색 변화 종말점에 도달하는 시간이 길기 때문에 냉장 육제품에 적용이 어려울 것으로 사료된다. 반면 안토시아니딘 TTI의 경우, 색 변화 종말점에 도달하는 시간이 짧기 때문에 냉장 육제품과 냉장 어류에 적용이 가능할 것으로 사료된다.

Keywords

References

  1. Park, H. J., Shim, S. D., Min, S. G., and Lee, S. J. 2009. Mathematical simulation of the temperature dependence of time temperature integrator (TTI) and meat qualities. Korean J. Food Sci. 29: 349-355. https://doi.org/10.5851/kosfa.2009.29.3.349
  2. Koivukunnas, P., Hurme, E. 2008. Printed TTI indicators. US Patent 7430982.
  3. Mazza, G. and Brouillard, R. 1987. Recent development in the stabilization of anthocyanins of food products. Food Chem. 25: 207-225.
  4. Kirca, A., Ozhan, M., and Cemeroglu, B. 2007. Effects of temperature, solid content and pH on the stability of black carrot antocyanins. Food Chem. 101: 212-218. https://doi.org/10.1016/j.foodchem.2006.01.019
  5. Adams, J. B. 1973. Thermal degradation of anthocyanins with particular reference to the 3-glycosides of cyanidin. I. In acidified aqueous solution at $100{\circ}C$. Sci. Food Agric. 24: 747-762. https://doi.org/10.1002/jsfa.2740240702
  6. Keppler, K. and Humpf, H. U. 2005. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorgan. Med. Chem. 13: 5195-5205. https://doi.org/10.1016/j.bmc.2005.05.003
  7. Matsui, T., Ebuchi, S., Kobayashi, M., Fukui, K., Sugita, K., Terahara, N., and Matsumoto, K. 2002. Anti-hyperglycemic effect of diacylated anthocyanin derived from Ipomoea batatas cultivar ayamurasaki can be achieved through the r-Glucosidase inhibitory action. J. Agric. Food Chem. 50: 7244-7248. https://doi.org/10.1021/jf025913m
  8. Aura, A. M, Martin-Lopez, P., O'Leary, K. A., Williamson, G., Oksman-Caldentey, K. M., Poutanen, K., and Santos-Buelga, C. 2005. In vitro metabolism of anthocyanins by human gut microflora. Eur. J. Nutr. 44: 133-142. https://doi.org/10.1007/s00394-004-0502-2
  9. Patras, A., Brunton, N. P., O'Donnell, C., and Tiwari, B. K. 2010. Effect of thermal processing in anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Tech. 21: 3-11. https://doi.org/10.1016/j.tifs.2009.07.004
  10. Shipp, J. and Abdel-Aal, E-S.M. 2010. Food applications and physiological effects of anthocyanins as functional food ingredients. Open Food Sci. 4: 7-22. https://doi.org/10.2174/1874256401004010007
  11. Corrales, M., Toepfl, S., Butz, P., Knorr, D., and Tauscher, B. 2008. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innov. Food Sci. Emerg. 9: 85-91. https://doi.org/10.1016/j.ifset.2007.06.002
  12. Kang, J. W., Choi J. H., Park S. Y., Kim M. J., Kim M. J., Lee M. H., Jung S. W., and Lee S. J. 2014. Mathematical analysis on TTI's estimation accuracy of food shelf life depending on its discrepancy in temperature dependence. Korean J. Packag. Sci. Tech. 20: 85-89.
  13. Lee, J., Durst, R. W., and Wrolstad, R. E. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88:1269-1278.
  14. Mullen, W., Edwards C. A., Serafini, M., and Crozier, A. 2008. Bioavailability of pelargonidin-3-O-glucoside and its metabolites in humans following the ingestion of strawberries with and without cream. J. Agric. Food Chem. 56: 713-179. https://doi.org/10.1021/jf072000p
  15. Es-Safi, N. E., Cheynier, V., and Moutounet, M. 2002. Interactions between cyaniding 3-O-glucoside and furfural derivatives and their impact in food color changes. J. Agric. Food Chem. 50: 5586-5595. https://doi.org/10.1021/jf025504q
  16. Ducamp-Collin, M. N., Ramarson, H., Lebrum, M., Self, G., and Reynes, M. 2008. Effect of citric acid and chitosan in maintaining red colouration of litchi fruit pericarp. Postharvest Biol. Technol. 49: 241-246. https://doi.org/10.1016/j.postharvbio.2008.01.009
  17. Jang, D. H., Kim, D. J., and Moon, J. H. 2009. Influence of fluid physical properties in ink-jet printability. Langmuir 25:2629-2635. https://doi.org/10.1021/la900059m
  18. Barnes, H. A. 1997. Thixotropy-a review. J. Non-Newtonian Fluid Mech. 70: 1-33. https://doi.org/10.1016/S0377-0257(97)00004-9
  19. Cohu, O. and Magnin, A. 1996. The levelling of thixotropic coatings. Prog. Org. Coat. 28: 89-96. https://doi.org/10.1016/0300-9440(95)00556-0
  20. Green, H. and Weltmann, R. N. 1943. Analysis of the thixotropy of pigment-vehicle suspensions. Ind. Eng. Chem. Anal. Ed. 15: 201-206. https://doi.org/10.1021/i560115a015
  21. Pierre, A., Sadeghi, M., Payne, M. M., Facchetti, A., Anthony, J. E., and Arias, A. C. 2014. All-printed flexible organic transistors enabled by surface tension-guided blade coating. Adv. Mater. 26: 5722-5727. https://doi.org/10.1002/adma.201401520
  22. Liang, T.-X., Sun, W.-Z., Wang, L.-D., Wang, Y. H., and Li, H.-D. 1996. Effect of surface energies on screen printing resolution. IEEE Trans. Compon. Packag. Manuf. Technol. 19:423-426.
  23. Lee, J. M., Durst, R. W., and Wrolstad, R. E. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 88:1269-1278.
  24. Vaikousi, H., Biliaderis, C. G., and Koutsoumanis, K. P. 2009. Applicability of a microbial Time Temperature Indicator (TTI) for monitoring spoilage of modified atmosphere packed minced meat. Int. J. Food. Microbiol. 133: 272-278. https://doi.org/10.1016/j.ijfoodmicro.2009.05.030
  25. Bakowska, A., Kucharska, A. Z., and Oszmianski, J., 2003. The effects of heating, UV irradiation, and storage on stability of the anthocyanin-polyphenol copigment complex. Food Chem. 81: 349-355. https://doi.org/10.1016/S0308-8146(02)00429-6
  26. Krifi, B., Chouteau, F., Boudrant, J., and Metche, M. 2000. Degradation of anthocyanins from blood orange juices. Int. J. Food Sci. Tech. 35: 275-283. https://doi.org/10.1046/j.1365-2621.2000.00330.x
  27. Ellouze, M. and Augustin, J.-C. 2010. Applicability of biological time temperature integrators as quality and safety indicators for meat products. Int. J. Food Microbiol. 138: 119-129. https://doi.org/10.1016/j.ijfoodmicro.2009.12.012
  28. Yoon, S. H., Lee, C. H., Kim, D. Y., Kim, J. W., and Park, K. H. 1994. Time-temperature indicator using phospholipid-phospholipase system and application to storage of frozen pork. J. Food Sci. 59: 490-493. https://doi.org/10.1111/j.1365-2621.1994.tb05544.x
  29. Kim, Y. A., Jung, S. W., Park, H. R., Chung, K. Y., and Lee, S. J. 2012. Application of a prototype of microbial time temperature indicator (TTI) to the prediction of ground beef qualities during storage. Korea J. Food Sci. An. 32: 448-457. https://doi.org/10.5851/kosfa.2012.32.4.448
  30. Han, J. Y., Kim, M. J., Shim, S. D., and Lee, S. J. 2012. Application of fuzzy reasoning to prediction of beef sirloin quality using time temperature integrators (TTIs). Food Control 24:148-153. https://doi.org/10.1016/j.foodcont.2011.09.018
  31. Taoukis, P. S., Koutsoumanis, K., and Nychas, G. J. E. 1999. Use of time-temperature integrators and predictive modelling for shelf life control of chilled fish under dynamic storage conditions. Int. J. Food Microbiol. 53: 21-31. https://doi.org/10.1016/S0168-1605(99)00142-7
  32. Simpson, R., Almonacid, S., Nunez, H., Pinto, M., Abakarov, A., and Teixeira, A. 2011. Time-temperature indicator to monitor cold chain distribution of fresh salmon (Salmo salar). J. Food Process Eng. 35: 742-750.
  33. Nuin, M., Alfaro, B., Cruz, Z., Argarate, N., George, S., Marc, Y. L., Olley, J., and Pin, C. 2008. Modelling spoilage of fresh turbot and evaluation of a time-temperature integrator (TTI) label under fluctuating temperature. Int. J. Food Microbiol. 127: 193-199. https://doi.org/10.1016/j.ijfoodmicro.2008.04.010
  34. Giannakourou, M. C. and Taoukis, P. S. 2003. Kinetic modelling of vitamin C loss in frozen green vegetables under variable storage conditions. Food Chem. 83: 33-41. https://doi.org/10.1016/S0308-8146(03)00033-5
  35. Bobelyn, E., Hertog, M. L. A. T. M., and Nicoll, B. M. 2006. Applicability of an enzymatic time temperature integrator as a quality indicator for mushrooms in the distribution chain. Postharvest Biol. Technol. 42: 104-114. https://doi.org/10.1016/j.postharvbio.2006.05.011
  36. Kang, Y. J., Kang, J. W., Choi, J. H., Park, S. Y., Rahman, A. T. M. M., Jung, S. W., and Lee, S. J. 2014. A feasibility study of application of laccase-based time-temperature indicator to kimchi quality control on fermentation process. J. Korean Soc. Appl. Biol. Chem. 57: 819-925. https://doi.org/10.1007/s13765-014-4178-x