Browse > Article
http://dx.doi.org/10.20909/kopast.2018.24.2.49

A Novel Printable Time-temperature Integrator with Anthocyanidin, a Natural Coloring Matter  

Jang, Han Dong (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul)
Yang, Jung Hwa (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul)
Kim, Do Hyeon (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul)
Ahn, Myung Hyun (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul)
Han, Seo Hyeon (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul)
Lee, Seung Ju (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul)
Publication Information
KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY / v.24, no.2, 2018 , pp. 49-56 More about this Journal
Abstract
A novel printable time-temperature integrator (TTI) composed of a natural coloring matter, anthocyanidin, was developed. The anthocyanin was biochemically modified to change in color over week scale, compared to the original anthocyanin over month scale change. The anthocyanin extracted from strawberry was converted to its aglycone, anthocyanidin, by the treatment with ${\beta}-glucosidase$. The print paste was composed of the freeze-dried powder of anthocyanidin, pullulan, glycerol and distilled water, which was screen-printed. The TTI performance were examined in terms of kinetics and temperature dependency. The activation energy of anthocyanidin TTI was 86.92 kJ/mol. Compared with the activation energy of foods, the applicable food groups were found. Applicable food groups were chilled meat products and fish. The major benefits of the TTI were the printability to be practical in use and the eco-friendliness with the natural pigment.
Keywords
Printable time-temperature integrator; anthocyanidin; ${\beta},D-glucosidase$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bobelyn, E., Hertog, M. L. A. T. M., and Nicoll, B. M. 2006. Applicability of an enzymatic time temperature integrator as a quality indicator for mushrooms in the distribution chain. Postharvest Biol. Technol. 42: 104-114.   DOI
2 Kang, Y. J., Kang, J. W., Choi, J. H., Park, S. Y., Rahman, A. T. M. M., Jung, S. W., and Lee, S. J. 2014. A feasibility study of application of laccase-based time-temperature indicator to kimchi quality control on fermentation process. J. Korean Soc. Appl. Biol. Chem. 57: 819-925.   DOI
3 Shipp, J. and Abdel-Aal, E-S.M. 2010. Food applications and physiological effects of anthocyanins as functional food ingredients. Open Food Sci. 4: 7-22.   DOI
4 Corrales, M., Toepfl, S., Butz, P., Knorr, D., and Tauscher, B. 2008. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innov. Food Sci. Emerg. 9: 85-91.   DOI
5 Kang, J. W., Choi J. H., Park S. Y., Kim M. J., Kim M. J., Lee M. H., Jung S. W., and Lee S. J. 2014. Mathematical analysis on TTI's estimation accuracy of food shelf life depending on its discrepancy in temperature dependence. Korean J. Packag. Sci. Tech. 20: 85-89.
6 Lee, J., Durst, R. W., and Wrolstad, R. E. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88:1269-1278.
7 Mullen, W., Edwards C. A., Serafini, M., and Crozier, A. 2008. Bioavailability of pelargonidin-3-O-glucoside and its metabolites in humans following the ingestion of strawberries with and without cream. J. Agric. Food Chem. 56: 713-179.   DOI
8 Es-Safi, N. E., Cheynier, V., and Moutounet, M. 2002. Interactions between cyaniding 3-O-glucoside and furfural derivatives and their impact in food color changes. J. Agric. Food Chem. 50: 5586-5595.   DOI
9 Ducamp-Collin, M. N., Ramarson, H., Lebrum, M., Self, G., and Reynes, M. 2008. Effect of citric acid and chitosan in maintaining red colouration of litchi fruit pericarp. Postharvest Biol. Technol. 49: 241-246.   DOI
10 Jang, D. H., Kim, D. J., and Moon, J. H. 2009. Influence of fluid physical properties in ink-jet printability. Langmuir 25:2629-2635.   DOI
11 Kirca, A., Ozhan, M., and Cemeroglu, B. 2007. Effects of temperature, solid content and pH on the stability of black carrot antocyanins. Food Chem. 101: 212-218.   DOI
12 Park, H. J., Shim, S. D., Min, S. G., and Lee, S. J. 2009. Mathematical simulation of the temperature dependence of time temperature integrator (TTI) and meat qualities. Korean J. Food Sci. 29: 349-355.   DOI
13 Koivukunnas, P., Hurme, E. 2008. Printed TTI indicators. US Patent 7430982.
14 Mazza, G. and Brouillard, R. 1987. Recent development in the stabilization of anthocyanins of food products. Food Chem. 25: 207-225.
15 Adams, J. B. 1973. Thermal degradation of anthocyanins with particular reference to the 3-glycosides of cyanidin. I. In acidified aqueous solution at $100{\circ}C$. Sci. Food Agric. 24: 747-762.   DOI
16 Keppler, K. and Humpf, H. U. 2005. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorgan. Med. Chem. 13: 5195-5205.   DOI
17 Matsui, T., Ebuchi, S., Kobayashi, M., Fukui, K., Sugita, K., Terahara, N., and Matsumoto, K. 2002. Anti-hyperglycemic effect of diacylated anthocyanin derived from Ipomoea batatas cultivar ayamurasaki can be achieved through the r-Glucosidase inhibitory action. J. Agric. Food Chem. 50: 7244-7248.   DOI
18 Aura, A. M, Martin-Lopez, P., O'Leary, K. A., Williamson, G., Oksman-Caldentey, K. M., Poutanen, K., and Santos-Buelga, C. 2005. In vitro metabolism of anthocyanins by human gut microflora. Eur. J. Nutr. 44: 133-142.   DOI
19 Patras, A., Brunton, N. P., O'Donnell, C., and Tiwari, B. K. 2010. Effect of thermal processing in anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Tech. 21: 3-11.   DOI
20 Barnes, H. A. 1997. Thixotropy-a review. J. Non-Newtonian Fluid Mech. 70: 1-33.   DOI
21 Cohu, O. and Magnin, A. 1996. The levelling of thixotropic coatings. Prog. Org. Coat. 28: 89-96.   DOI
22 Green, H. and Weltmann, R. N. 1943. Analysis of the thixotropy of pigment-vehicle suspensions. Ind. Eng. Chem. Anal. Ed. 15: 201-206.   DOI
23 Pierre, A., Sadeghi, M., Payne, M. M., Facchetti, A., Anthony, J. E., and Arias, A. C. 2014. All-printed flexible organic transistors enabled by surface tension-guided blade coating. Adv. Mater. 26: 5722-5727.   DOI
24 Liang, T.-X., Sun, W.-Z., Wang, L.-D., Wang, Y. H., and Li, H.-D. 1996. Effect of surface energies on screen printing resolution. IEEE Trans. Compon. Packag. Manuf. Technol. 19:423-426.
25 Lee, J. M., Durst, R. W., and Wrolstad, R. E. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 88:1269-1278.
26 Vaikousi, H., Biliaderis, C. G., and Koutsoumanis, K. P. 2009. Applicability of a microbial Time Temperature Indicator (TTI) for monitoring spoilage of modified atmosphere packed minced meat. Int. J. Food. Microbiol. 133: 272-278.   DOI
27 Bakowska, A., Kucharska, A. Z., and Oszmianski, J., 2003. The effects of heating, UV irradiation, and storage on stability of the anthocyanin-polyphenol copigment complex. Food Chem. 81: 349-355.   DOI
28 Krifi, B., Chouteau, F., Boudrant, J., and Metche, M. 2000. Degradation of anthocyanins from blood orange juices. Int. J. Food Sci. Tech. 35: 275-283.   DOI
29 Yoon, S. H., Lee, C. H., Kim, D. Y., Kim, J. W., and Park, K. H. 1994. Time-temperature indicator using phospholipid-phospholipase system and application to storage of frozen pork. J. Food Sci. 59: 490-493.   DOI
30 Ellouze, M. and Augustin, J.-C. 2010. Applicability of biological time temperature integrators as quality and safety indicators for meat products. Int. J. Food Microbiol. 138: 119-129.   DOI
31 Kim, Y. A., Jung, S. W., Park, H. R., Chung, K. Y., and Lee, S. J. 2012. Application of a prototype of microbial time temperature indicator (TTI) to the prediction of ground beef qualities during storage. Korea J. Food Sci. An. 32: 448-457.   DOI
32 Han, J. Y., Kim, M. J., Shim, S. D., and Lee, S. J. 2012. Application of fuzzy reasoning to prediction of beef sirloin quality using time temperature integrators (TTIs). Food Control 24:148-153.   DOI
33 Taoukis, P. S., Koutsoumanis, K., and Nychas, G. J. E. 1999. Use of time-temperature integrators and predictive modelling for shelf life control of chilled fish under dynamic storage conditions. Int. J. Food Microbiol. 53: 21-31.   DOI
34 Simpson, R., Almonacid, S., Nunez, H., Pinto, M., Abakarov, A., and Teixeira, A. 2011. Time-temperature indicator to monitor cold chain distribution of fresh salmon (Salmo salar). J. Food Process Eng. 35: 742-750.
35 Nuin, M., Alfaro, B., Cruz, Z., Argarate, N., George, S., Marc, Y. L., Olley, J., and Pin, C. 2008. Modelling spoilage of fresh turbot and evaluation of a time-temperature integrator (TTI) label under fluctuating temperature. Int. J. Food Microbiol. 127: 193-199.   DOI
36 Giannakourou, M. C. and Taoukis, P. S. 2003. Kinetic modelling of vitamin C loss in frozen green vegetables under variable storage conditions. Food Chem. 83: 33-41.   DOI