Browse > Article
http://dx.doi.org/10.20909/kopast.2018.24.2.41

Printable Time Temperature Integrator Consisting of Oxygen Indicator and Cover Film with Various Oxygen Permeability  

Kim, Do Hyeon (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul)
Jang, Han Dong (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul)
Han, Seo Hyeon (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul)
Ahn, Myung Hyun (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul)
Lee, Seung Ju (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul)
Publication Information
KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY / v.24, no.2, 2018 , pp. 41-48 More about this Journal
Abstract
A printable time temperature integrator (TTI) consisting of oxygen indicator and cover films with various oxygen permeability was developed. The printing ink contained methylene blue (oxygen indicator) which changed in color during storage. $TiO_2$ and glycerol for UV-activation of TTI and zein and ethanol for printing performance were also contained in the printing ink. The cover film on the ink was employed to control the color change rate and temperature dependency (Arrhenius activation energy, $E_a$) by using the different films (PE, PET, OPP, and LLDPE). The film properties were varied by annealing. TTI was produced by silk screen printing. As a result, the color change rates were different for the cover films, being the highest in TTI with LLDPE, followed by OPP, PE, and PET. The rate decreased with increase in the cover film thickness. The $E_a$ was the highest in TTI with LLDPE, followed by OPP, PE, and PET. The $E_a$ did not change with the cover film thickness. The annealed PVC and PET film were lower in oxygen permeability than the unannealed ones, indicating the lower color change rate.
Keywords
Printable time-temperature indicator; Oxygen indicator; Annealing; Oxygen permeability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Taoukis, P. S. 2001. Food process modelling. L. M. M. Tijskens, CRC press, England, pp. 402-432.
2 Taoukis, P. S., Koutsoumanis, K., and Nychas, G. J. 1999. Use of time temperature integrators and predictive modelling for shelf life. Int. J. Food Microbiol. 53: 21-31.   DOI
3 Rodriguez, N. and Zaritzky N. E. 1983. Development of time-temperature integrator-indicator for frozen beef. J. Food Sci. 48: 1526-1531.   DOI
4 Ellouze, M. and Augustin, J. C. 2010. Applicability of biological time temperature integrators as quality and safety indicators for meat products. Int. J. Food Microbiol. 138: 119-129.   DOI
5 Giannakourou, M. C., Koutsoumanis, K., Nychas, G. J., and Taoukis, P. S. 2005. Field evaluation of the application of time temperature integrators for monitoring fish quality in the chill chain. Int. J. Food Microbiol. 102: 323-336.   DOI
6 Shellhammer, T. H. and Singh, R. P. 1991. Monitoring chemical and microbial changes of cottage cheese using a full history time temperature indicator. J. Food Sci. 56: 402-410.   DOI
7 Fu, B., Taoukis, P. S., and Labuza, T. P. 1991. Predictive microbiology for monitoring spoilage of dairy products with time-temperature indicators. J. Food Sci. 56: 1209-1215.   DOI
8 Giannakourou, M. C. and Taoukis, P. S. 2003. Kinetic modeling of vitamin C loss in frozen green vegetables under variable storage conditions. Food Chem. 83: 33-41.   DOI
9 Poças, M. F. F., Delgado, T. F., and Oliveira, F. A. R. 2008. Smart packaging technologies for fruits and vegetables. In Smart packaging technologies. John Wiley and Sons Ltd, West Sussex, England, pp. 151-166.
10 Yan, S., Huawei, C., Limin, Z., Fazheng, R., Luda, Z., and Hengtao, Z. 2008. Development and characterization of a new amylase type time-temperature indicator. Food Control 19: 315-319.   DOI
11 Bobelyn, E., Hertog, M. L., and Nicolai, B. M. 2006. Applicability of an enzymatic time temperature integrator as a quality indicator for mushrooms in the distribution chain. Postharvest Biol. Tech. 42: 104-114.   DOI
12 Kim, W., Park, E. A., and Hong, K. W. 2012. Development of a time-temperature integrator system using Burkholderia cepacia lipase. Food sci. Biotech. 21: 497-502.   DOI
13 Xie, K., Liu, H., and Wang, X. 2009. Surface modification of cellulose with triazine derivative to improve printability with reactive dyes. Carbohyd. Polym. 78: 538-542.   DOI
14 Choi, D. Y., Jung, S.W., Lee, D. S., and Lee, S. J. 2013. Fabrication and characteristics of microbial time temperature indicators from bio-paste using screen printing method. Package Tech. Sci. 27: 303-312.
15 Chen, J. H. and Zall, R. R. 1987. Packaged milk, cream and cottage cheese can be monitored for freshness using polymer indicator labels. Dairy Food Sanit. 7: 402-404.
16 Suppakul, P. Kim, D. Y., Yang, J. H., Lee, S. B., and Lee, S. J. 2018. Practical design of a diffusion-type-temperature indicator with intrinsic low temperature dependency. J. Food Eng. 223: 22-31.   DOI
17 Galagan, Y., Hsu, S. H., and Su, W. F. 2010. Monitoring time and temperature by methylene blue containing polyacrylate film. Sensor. Actuat. B-Chem. 144: 4955.
18 Galagan, Y. and Su, W. F. 2008. Fadable ink for time-temperature control of food freshness: Novel new time-temperature indicator. Food Res. Int. 41: 653-657.   DOI
19 Magoshi, J. and Nakamura, S. 1975. Studies on physical properties and structure of silk. Glass transition and crystallization of silk fibroin. J. Appl. Polym. Sci. 19: 1013-1015.   DOI
20 Price, D. M., Reading, M., Hammiche, A., Pollock, H. M., and Branch, M. G. 1999. Localised thermal analysis of a packaging film. Thermochim. Acta 332: 143-149.   DOI
21 Park, H. R., Kim, K. H., and Lee, S. J. 2013. Adjustment of Arrehenius activation energy of laccase-based time-temperature integrator (TTI) using sodium azide. Food Control 32: 615-620.   DOI
22 Dabral, S., Van Etten, J., Zhang, X., Apblett, C., Yang, G. R., Ficalora, P., and McDonald, J. F. 1992. Stress in thermally annealed parylene films. J. Electron. Mater. 21: 989-994.   DOI
23 Perkins, W. 1988. Effect of molecular weight and annealing temperature on the oxygen barrier properties of oriented PET film. Polym. Bull. 19: 397-401.
24 Taoukis, P. S. and Labuza, T. 1989. Applicability of timetemperature indicators as shelf life monitors of food products. J. Food Sci. 54: 783-788.   DOI
25 Yan. S., Huawei, C., Limin, Z., Fazheng, R., Luda, Z., and Hengtao, Z. 2008. Development and characterization of a new amylase type time-temperature indicator. Food Control 19: 315-319.   DOI
26 Mills, A., Tommons, C., Bailey, R. T., Tedford, M. C., and Crilly, P. J. 2008. UV-activated luminescence/colourmetric $O_2$ indicator. Int. J. Photoenergy. open access article ID 547301, doi:10.1155/2008/547301, p. 6.   DOI
27 Dhawan, S. 2013. Polymeric-based multilayer food packaging films for pressure-assisted and microwave-assisted thermal sterilization. Proquest dissertation publishing, Washington, USA, pp. 68-89.
28 Park, H. J., Shim, S. D., Min, S. G., and Lee, S. J. 2009. Mathematical simulation of the temperature dependence of time temperature integrator (TTI) and meat qualities. Korean J. Food Sci. An. 29: 349-355.   DOI
29 Fischer, E. W. 1972. Effect of annealing and temperature on the morphological structure of polymers. Pure Appl. Chem. 31: 113-132.   DOI
30 Drieskens, M., Peeters, R., Mullens, J., Franco, D., Lemstra, P. J., and Hristova-Bogaerds, D. G. 2009. Structure versus properties relationship of poly(lactic acid). I. Effect of crystallinity on barrier properties. J. Polym. Sci. 47: 2247-2258.   DOI
31 Kim, J., Kim, M. S., and Kim, B. W. 2011. Study on isothermal crystallization behavior and surface properties of nonoriented PLA film with annealing temperature. Kor. Chem. Eng. Res. 49: 611-616.   DOI