CBD is a software development approach based on reusable component and supports easy modification and evolution of software. For the success of this approach, a component must be developed with high cohesion and low coupling. In this paper, we propose the two types of clustering analysis technique based on affinity between use-cases and classes and propose component identification method applying to this technique. We also propose component reference model and CBD methodology framework and perform a ease study to demonstrate how the affinity-based clustering technique is used in component identification method. Component identification method contains three tasks such as component extraction, component specification and component architecting. This method uses object-oriented concept for identifying component, which improves traceability from analysis to implementation and can automatically extract component. This method reflects the low coupling-high cohesion principle for good modularization about reusable component.
Kim, Sun-Hee;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang
International Journal of Contents
/
v.10
no.2
/
pp.47-58
/
2014
Physiological signals provide important clues in the diagnosis and prediction of disease. Analyzing these signals is important in health and medicine. In particular, data preprocessing for physiological signal analysis is a vital issue because missing values, noise, and outliers may degrade the analysis performance. In this paper, we propose PhysioCover, a system that can recover missing values of physiological signals that were monitored in real time. PhysioCover integrates a gradual method and EM-based Principle Component Analysis (PCA). This approach can (1) more readily recover long- and short-term missing data than existing methods, such as traditional EM-based PCA, linear interpolation, 5-average and Missing Value Singular Value Decomposition (MSVD), (2) more effectively detect hidden variables than PCA and Independent component analysis (ICA), and (3) offer fast computation time through real-time processing. Experimental results with the physiological data of an intensive care unit show that the proposed method assigns more accurate missing values than previous methods.
본 논문에서는 독립 성분 해석(Independent Component Analysis, ICA) 기법과 인근 평균 및 정규화를 이용한 영상 분류 방법을 제안하였다. ICA에 잡음을 주어 영상을 분류하였을 때, 잡음에 대한 강인성을 증가시키기 위하여, 제안된 인근 평균 및 정규화를 전처리로 적용하였다. 제안된 방법은 전처리 없이 ICA에 주성분 해석(Principal Component Analysis, PCA)을 이용한 것에 비해 잡음에 대한 강인성을 증가시키는 것을 모의 실험을 통하여 확인하였다.
In this study, we examined statistical analysis between sewage plant operations parameters and effluent quality We got six components from principle component analysis of the operation parameters and secondary effluent quality. 91.8% of the total variance was explained by the six components. The components were identified in the following order : 1) organic matter removal by aeration basin microbe, 2) settleability on secondary clarifier load, 3) removal of nutrients, 4) microbial number increasement and species diversity, 5) microbial activity in aeration basin, 6) oxidation in aeration basin.
In genome-wide association studies, pathway-based analysis has been widely performed to enhance interpretation of single-nucleotide polymorphism association results. We proposed a novel method of hierarchical structural component model (HisCoM) for pathway analysis of common variants (HisCoM for pathway analysis of common variants [HisCoM-PCA]) which was used to identify pathways associated with traits. HisCoM-PCA is based on principal component analysis (PCA) for dimensional reduction of single nucleotide polymorphisms in each gene, and the HisCoM for pathway analysis. In this study, we developed a HisCoM-PCA software for the hierarchical pathway analysis of common variants. HisCoM-PCA software has several features. Various principle component scores selection criteria in PCA step can be specified by users who want to summarize common variants at each gene-level by different threshold values. In addition, multiple public pathway databases and customized pathway information can be used to perform pathway analysis. We expect that HisCoM-PCA software will be useful for users to perform powerful pathway analysis.
Seo, Young-Jin;Huh, Min-Soon;Kim, Chang-Bae;Lee, Dong-Hoon;Choi, Jung;Kim, Chan-Yong
Korean Journal of Soil Science and Fertilizer
/
v.34
no.3
/
pp.173-177
/
2001
This study was conducted to investigate a potential utilitization of multivariate statistical analysis(Factor analysis, Discrimination analysis) on interpretation of rice plant lodging reason. Rice plants were sampled in paddy around Taegu city at from 25 to 29 of September in 2000. Mineral nutrient content(phosphate, potassium) of rice plant were significantly higher at 99% level, Silicate content were lower at 95% level in lodged samples than in normal. Plant characteristics associate with lodging(Culm length, second and third internode length, bight of center gravity) were significantly longer in lodged rice plant than in non lodged. Result of Factor analysis were that first principle component were culm length, second(N2) and third internode length(N3), second principle component were Ca content, first internode length(N1) and N3/culm length, third principle component were center gravity length(G) and G/culm length, fourth were nitrogen, phosphate, and potassium content, fifth were N2/culm length, N2+N3/culm length, Sixth was silicate content of rice plant. Linear discriminant equation distinguished lodged rice plants with non lodged rice plants very well. Prediction value was 100%, most explainable variable were phosphate content, culm length and third length.
The statistical characteristics of aerosol-cloud interactions over East Asia were investigated using Moderate Resolution Imaging Spectroradiometer satellite data. The long-term relationship between various aerosol and cloud parameters was estimated using correlation analysis, principle component analysis, and Aerosol Indirect Effect (AIE) estimation. In correlation analysis, Aerosol Optical Depth (AOD) was positively Correlated with Cloud Condensation Nuclei (CCN) and Cloud Fraction (CF), but negatively correlated with Cloud Top Temperature (CTT) and Cloud Top Pressure (CTP). Fine Mode Fraction (FMF) and CCN were positively correlated over the ocean because of sea spray. In principle component analysis, AOD and FMF were influenced by water vapor. In particular, AOD was positively influenced by CF, and negatively by CTT and CTP over the ocean. In AIE estimation, the AIE value in each cloud layer and type was mostly negative (Twomey effect) but sometimes positive (anti-Twomey effect). This is related to regional, environmental, seasonal, and meteorological effects. Rigorous and extensive studies on aerosol-cloud interactions over East Asia should be conducted via micro- and macro-scale investigations, to determine chemical characteristics using various meteorological instruments.
Journal of Korean Society for Geospatial Information Science
/
v.25
no.1
/
pp.9-17
/
2017
Hyperspectral imagery is used in the land cover classification with the principle component analysis and minimum noise fraction to reduce the data dimensionality and noise. Recently, studies on the supervised classification using various features having spectral information and spatial characteristic have been carried out. In this study, principle component bands and normalized difference vegetation index(NDVI) was utilized in the supervised classification for the land cover classification. To utilize additional information not included in the principle component bands by the hyperspectral imagery, we tried to increase the classification accuracy by using the NDVI. In addition, the extended attribute profiles(EAP) generated using the morphological filter was used as the input data. The random forest algorithm, which is one of the representative supervised classification, was used. The classification accuracy according to the application of various features based on EAP was compared. Two areas was selected in the experiments, and the quantitative evaluation was performed by using reference data. The classification accuracy of the proposed algorithm showed the highest classification accuracy of 85.72% and 91.14% compared with existing algorithms. Further research will need to develop a supervised classification algorithm and additional input datasets to improve the accuracy of land cover classification using hyperspectral imagery.
For face recognition system, a face detector which can find exact face region from complex image is needed. Many face detection algorithms have been developed under the assumption that background of the source image is quite simple . this means that face region occupy more than a quarter of the area of the source image or the background is one-colored. Color-based face detection is fast but can't be applicable to the images of which the background color is similar to face color. And the algorithm using neural network needs so many non-face data for training and doesn't guarantee general performance. In this paper, A multi-scale, multi-face detection algorithm using PCA is suggested. This algorithm can find most multi-scaled faces contained in static images with small number of training data in reasonable time.
Journal of Institute of Control, Robotics and Systems
/
v.13
no.5
/
pp.481-486
/
2007
Wireless Sensor Network(WSNs) consists of small sensor nodes with sensing, computation, and wireless communication capabilities. The large number of sensor nodes in a WSN means that there will often be some nodes which give erroneous sensor data owing to several reasons such as power shortage and transmission error. Generally, these sensor data are gathered by a sink node to monitor and diagnose the current environment. Therefore, this can make it difficult to get an effective monitoring and diagnosis. In this paper, to overcome the aforementioned problems, intelligent sensor data validation method based on PCA(Principle Component Analysis) is utilized. Furthermore, a practical implementation using embedded system is given to show the feasibility of the proposed scheme.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.