DOI QR코드

DOI QR Code

Accuracy Evaluation of Supervised Classification by Using Morphological Attribute Profiles and Additional Band of Hyperspectral Imagery

초분광 영상의 Morphological Attribute Profiles와 추가 밴드를 이용한 감독분류의 정확도 평가

  • Park, Hong Lyun (Department of Civil Engineering, Chungbuk National University) ;
  • Choi, Jae Wan (School of Civil Engineering, Chungbuk National University)
  • Received : 2016.11.28
  • Accepted : 2017.03.15
  • Published : 2017.03.31

Abstract

Hyperspectral imagery is used in the land cover classification with the principle component analysis and minimum noise fraction to reduce the data dimensionality and noise. Recently, studies on the supervised classification using various features having spectral information and spatial characteristic have been carried out. In this study, principle component bands and normalized difference vegetation index(NDVI) was utilized in the supervised classification for the land cover classification. To utilize additional information not included in the principle component bands by the hyperspectral imagery, we tried to increase the classification accuracy by using the NDVI. In addition, the extended attribute profiles(EAP) generated using the morphological filter was used as the input data. The random forest algorithm, which is one of the representative supervised classification, was used. The classification accuracy according to the application of various features based on EAP was compared. Two areas was selected in the experiments, and the quantitative evaluation was performed by using reference data. The classification accuracy of the proposed algorithm showed the highest classification accuracy of 85.72% and 91.14% compared with existing algorithms. Further research will need to develop a supervised classification algorithm and additional input datasets to improve the accuracy of land cover classification using hyperspectral imagery.

초분광 영상(hyperspectral imagery)은 주성분분석이나 최소잡음비율 등을 이용하여 자료의 차원과 잡음을 감소시켜 토지피복분류에 사용되는 것이 일반적이다. 최근에는 분광정보와 공간적 특성을 가진 다양한 입력 자료를 이용한 감독분류에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 초분광 영상을 이용한 토지피복분류를 위해 principle component(PC) 밴드와 normalized difference vegetation index(NDVI) 자료를 감독분류의 입력자료로 활용하였다. NDVI 자료는 초분광 영상에서 추출된 PC 밴드가 포함하고 있지 않는 추가적인 정보를 활용하여 식생지역에 대한 토지피복분류 정확도를 높이고자 사용하였으며, morphological filter를 통해 각 밴드의 extended attribute profiles(EAP)를 제작하여 분류를 위한 입력 자료로 사용하였다. 감독분류기법은 random forest 알고리즘을 이용하였으며, EAP를 기반으로 다양한 입력 자료의 적용에 따른 분류정확도를 비교하고자 하였다. 연구지역으로는 두 대상지를 선정하였으며, 영상 내에서 취득한 참조자료를 이용하여 정량적인 평가를 수행하였다. 본 연구에서 제안한 기법의 분류정확도는 85.72%와 91.14%로 다른 입력 자료들을 이용한 경우와 비교하여 가장 높은 분류정확도를 나타냈다. 향후, 초분광 영상을 이용한 토지피복분류의 정확도를 높이기 위한 분류 알고리즘 개발과 대상지역 특성에 맞는 추가 입력자료 개발에 관한 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Bao, R., Xia, J., Mura, M. D., Du, P. and Chanussot, J., 2016, Combining morphological attribute profiles via and ensemble method for hyperspectral image classification, IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 3, pp. 359-363. https://doi.org/10.1109/LGRS.2015.2513002
  2. Benediktsson. J. A., Palmason, J. A. and Sveinsson, J. R., 2005, Classification of hyperspectral data from urban areas based on extended morphological profiles, IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 3, pp. 480-491. https://doi.org/10.1109/TGRS.2004.842478
  3. Breen, E. J. and Jones, R., 1996, Attribure openings, thinnings, and granulometries, Computer Vision and Image Understanding, Vol. 64, No. 3, pp. 377-389. https://doi.org/10.1006/cviu.1996.0066
  4. Cho, H. G. and Lee, K. S., 2014, Comparison between hyperspectral and multispectral images for the classification of coniferous species, Korean Journal of Remote Sensing, Vol. 30, No. 1, pp. 25-36. https://doi.org/10.7780/kjrs.2014.30.1.3
  5. Fauvel, M., Benediktsson, J. A., Chanussot, J. and Sveinsson, J. R., 2008, Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles, IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 11, pp. 3804-3814. https://doi.org/10.1109/TGRS.2008.922034
  6. Fauvel, M., Tarabalka, Y., Benediktsson, J. A., Chanussot, J. and Tilton, J. C., 2013, Advances in spectral-spatial classification of hyperspectral images, Vol. 101, No. 3, pp. 652-675. https://doi.org/10.1109/JPROC.2012.2197589
  7. Gislason, P. O., Benediktsson, J. A. and Sveinsson, J. R., 2006, Random forest for land cover classification, Pattern Recognition in Remote Sensing, Vol. 27, No. 4, pp. 294-300.
  8. Ham, J., Chen, Y., Crawford, M. M., 2005, Investigation of the Random Forest Framework for Classification of Hyperspectral Data, IEEE Transactions of Geoscience and Remote Sensing, Vol. 43, No. 3, pp. 492-501. https://doi.org/10.1109/TGRS.2004.842481
  9. Jang, S. J., Chae, O. S., Lee, H. N. and Kim, J. K., 2006, A study on the EO-1 Hyperion's optimized band selection method for land cover/land use map, Korean Journal of Geomatics, Vol. 24, No. 3, pp. 289-297.
  10. Licciardi, G., Marpu, P. R., Chanussot, J. and Benediktsson, J. A., 2011, Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles, IEEE Geoscience and Remote Sensing, Vol. 9, No. 3, pp. 447-451.
  11. Li, J., Huang, X., Bioucas-Dias, J. M., Zhang, L., Benediktsson, J. A. and Plaza, A., 2015, Multiple feature learning for hyperspectral image classification, IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 3, pp. 1592-1606. https://doi.org/10.1109/TGRS.2014.2345739
  12. Mura, M. D., Benediktsson, J. A., Waske, B. and Bruzzone, L., 2010, Morphological attribute profiles for the analysis of very high resolution images, IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 10, pp. 3747-3762. https://doi.org/10.1109/TGRS.2010.2048116
  13. Mura, M. D., Villa, A., Benediktsson, J. A. and Chanussot, J., 2011, Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis, IEEE Geoscience and Remote Sensing, Vol. 8, No. 3, pp. 542-546. https://doi.org/10.1109/LGRS.2010.2091253
  14. Plaza, A., Martinez, P., Perez, R. and Plaza, J., 2004, A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles, Pattern Recognition, Vol. 37, No. 6, pp. 1097-1116. https://doi.org/10.1016/j.patcog.2004.01.006
  15. Rodarmel, C. and Shan, J., 2002, Principle Component Analysis for Hyperspectral Image Classification, Surveying and Land Information Science, Vol. 62, No. 2, pp. 115-122
  16. Rodriguez-Galiano, V. F., Chica-Olmo, M., Abarca-Hernandez, F., Atkinson, P. M. and Jeganathan, C., 2012, Random forest classification of mediterranean land cover using multi-seasonal imagery and multiseasonal texture, Remote Sensing of Environment, Vol. 121, pp. 93-107. https://doi.org/10.1016/j.rse.2011.12.003
  17. Shin, J. I., Cho, H. G., Kim, S. H., Choi, I. H. and Jung, K. K., 2015, Water column correction of airborne hyperspectral image for benthic cover type classification of coastal area, Journal of Korea Spatial Information Society, Vol. 23, No. 2, pp. 31-38.
  18. Tarabalka, Y., Chanussot, J. and Benediktsson, J. A., 2010, Segmentation and classification of hyperspectral images using watershed transformed, Pattern Recognition, Vol. 43, No. 7, pp. 2367-2379. https://doi.org/10.1016/j.patcog.2010.01.016
  19. Zhang, Q., Qin, R., Huang, X., Fang, Y. and Liu, L., 2015, Classification of ultra-high resolution orthophotos combined with DSM using a dual morphological top hat profiles, Remote Sensing, Vol. 7, No. 12, pp. 16422-16440. https://doi.org/10.3390/rs71215840

Cited by

  1. A Comparative Study of Carbon Absorption Measurement Using Hyperspectral Image and High Density LiDAR Data in Geojedo vol.35, pp.4, 2017, https://doi.org/10.7848/ksgpc.2017.35.4.231
  2. UAV를 활용한 초분광 영상의 하천공간특성 분류 연구 vol.19, pp.10, 2017, https://doi.org/10.5762/kais.2018.19.10.633
  3. 초분광 영상의 최대 강도값과 하천 수심의 상관성 분석 vol.6, pp.3, 2017, https://doi.org/10.17820/eri.2019.6.3.171
  4. 이종 영상 간의 무감독 변화탐지를 위한 초분광 영상의 차원 축소 방법 분석 vol.22, pp.4, 2017, https://doi.org/10.11108/kagis.2019.22.4.001
  5. 초분광 영상정보를 이용한 태화강 수계지역의 토지피복 변화분석 vol.24, pp.1, 2017, https://doi.org/10.11108/kagis.2021.24.1.012