• Title/Summary/Keyword: Principle Coordinate Analysis

Search Result 46, Processing Time 0.022 seconds

Nonlinear Dynamic Analysis of a Satellite with Tether Conveying Fluid (유체가 이송하는 테더가 있는 인공위성의 동특성 분석)

  • Jung, Won-Young;Lee, Kyu-Ho;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.691-697
    • /
    • 2011
  • The purpose of this study is to analyze nonlinear dynamics of a tethered satellite. The coupled non-linear equations of motion are derived by using the extended Hamilton's principle with the polar coordinate system. In order to analyze the response of tethered satellite, time responses are computed by the Newmark's time integration method. We also investigate the dynamic behavior of the system and the effects of length of tether, tip mass and conveyed fluid through the tether with time variation.

Modeling and Simulation of Aircraft Motion on the Ground: Part I. Derivation of Equations of Motion

  • Ro, Kapseong;Lee, Haechang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.28-43
    • /
    • 2001
  • Developed in these two series of paper is a complex dynamic model representing the motion of aircraft on the ground and a computer program for numerical simulation. The first part of paper presents the theoretical derivation of equations of motion of the landing gear system based on the physical principle. Developed model is 'structured' in the sense that the undercarriage system is regarded as an assembly of strut, tire, and wheel, where each component is modeled by a separate module. These modules are linked with two external modules-the aircraft and the runway characteristics-to carry out dynamic analysis and numerical simulation of the aircraft motion on the ground. Three sets of coordinate system associated with strut, wheel/tire and runway are defined, and external loads to each component and response characteristics are examined. Lagrangian formulation is used to derive the undercarriage equations of motion relative to the moving aircraft, and the resultant forces and moments from the undercarriage are transformed to aircraft body axes.

  • PDF

Bending response of functionally graded piezoelectric plates using a two-variable shear deformation theory

  • Zenkour, Ashraf M.;Hafed, Zahra S.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.2
    • /
    • pp.115-134
    • /
    • 2020
  • This paper proposes a bending analysis for a functionally graded piezoelectric (FGP) plate through utilizing a two-variable shear deformation plate theory under simply-supported edge conditions. The number of unknown functions used in this theory is only four. The electric potential distribution is assumed to be a combination of a cosine function along the cartesian coordinate. Applying the analytical solutions of FGP plate by using Navier's approach and the principle of virtual work, the equilibrium equations are derived. The paper also discusses thoroughly the impact of applied electric voltage, plate's aspect ratio, thickness ratio and inhomogeneity parameter. Results are compared with the analytical solution obtained by classical plate theory, first-order-shear deformation theory, higher-order shear deformation plate theories and quasi-three-dimensional sinusoidal shear deformation plate theory.

Efficient geometric nonlinear analyses of circular plate bending problems

  • Duan, Mei
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.405-420
    • /
    • 2005
  • In this paper, a hybrid/mixed nonlinear shell element is developed in polar coordinate system based on Hellinger/Reissner variational principle and the large-deflection theory of plate. A numerical solution scheme is formulated using the hybrid/mixed finite element method (HMFEM), in which the nodal values of bending moments and the deflection are the unknown discrete parameters. Stability of the present element is studied. The large-deflection analyses are performed for simple supported and clamped circular plates under uniformly distributed and concentrated loads using HMFEM and the traditional displacement finite element method. A parametric study is also conducted in the research. The accuracy of the shell element is investigated using numerical computations. Comparisons of numerical solutions are made with theoretical results, finite element analysis and the available numerical results. Excellent agreements are shown.

Levy-type solution for analysis of a magneto-electro-elastic panel

  • Jia He;Xuejiao Zhang;Hong Gong;H. Elhosiny Ali;Elimam Ali
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.719-729
    • /
    • 2023
  • This paper studies electro-magneto-mechanical bending studying of the cylindrical panels based on shear deformation theory. The cylindrical panel is constrained with two simply-supported edges at longitudinal direction and two clamped boundary conditions at circumferential direction. The governing equations are derived based on the principle of virtual work in cylindrical coordinate system. Levy-type solution of the governing equations is derived to reduce two dimensional PDEs to a 2D ODEs. The reduced ordinary differential equation is solved using the Eigen-value Eigen-vector method for the clamped-clamped boundary condition. The electro-magneto-mechanical bending results are obtained to show that every displacement, rotation and electromagnetic potentials how change with changes of initial electromagnetic potentials and mechanical loads along longitudinal and circumferential directions.

An Analysis of High School Student's Understanding Level about Basic Concepts of Special Relativity through in-depth interview (심층 면담을 통한 고등학생들의 특수 상대론 기초 개념에 대한 이해 수준 분석)

  • Kim, Jaekwon;Jung, Jinkyu;Kim, Youngmin
    • Journal of Science Education
    • /
    • v.38 no.3
    • /
    • pp.569-584
    • /
    • 2014
  • The Purpose of this study was an analysis of high school student's understanding level about concepts of special relativity through in-depth interview. The 8 participants were 10th grade students in H high school in Ulsan city, who were interviewed and analyzed in the results of the interview about basic concepts of special relativity using achievement checklist in 6 situations(principle of constancy of light velocity, principle of relativity, relativity of simultaneity, garage paradox, rocket paradox). As results of the checklist, the participants showed high achievement in the content level of simple phenomena and simple concepts related to special relativity. But they showed low achievement in the concept level for fundamental understanding of special relativity. As results of the interview, it was found that the participants decided the order of events depending on their intuition and had a difficulty to apply the coordinate system to real situation, even though they mathematically understood it. In addition, some participants who could not understand the inertial coordinate system explained paradoxes of relativity depending on their intuition and had learner's chaos. Finally, though high school students usually being in formal operational stage, some students had difficulty to draw phenomena of space and time in two dimensional plane.

  • PDF

Analytical solutions using a higher order refined theory for the stability analysis of laminated composite and sandwich plates

  • Kant, T.;Swaminathan, K.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.337-357
    • /
    • 2000
  • Analytical formulations and solutions for the first time, to the stability analysis of a simply supported composite and sandwich plates based on a higher order refined theory, developed by the first author and already reported in the literature are presented. The theoretical model presented herein incorporates laminate deformations which account for the effects of transverse shear deformation, transverse normal strain/stress and a nonlinear variation of inplane displacements with respect to the thickness coordinate - thus modelling the warping of transverse cross sections more accurately and eliminating the need for shear correction coefficients. The equations of equilibrium are obtained using the Principle of Minimum Potential Energy (PMPE). The comparison of the results using this higher order refined theory with the available elasticity solutions and the results computed independently using the first order and the other higher order theories developed by other investigators and available in the literature shows that this refined theory predicts the critical buckling load more accurately than all other theories considered in this paper. New results for sandwich laminates are also presented which may serve as a benchmark for future investigations.

Bending analysis of exponentially varied FG plates using trigonometric shear and normal deformation theory

  • Sunil S. Yadav;Keshav K. Sangle;Mandar U. Kokane;Sandeep S. Pendhari;Yuwaraj M. Ghugal
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.281-302
    • /
    • 2023
  • In this paper, bending analysis of exponentially varying functionally graded (FG) plate is presented using trigonometric shear deformation theory (TSDT) considering both transverse shear and normal deformation effects. The in-plane displacement field consists of sinusoidal functions in thickness direction to include transverse shear strains and transverse displacement include the effect of transverse normal strain using the cosine function in thickness coordinate. The governing equations and boundary conditions of the theory are derived using the virtual work principle. System of governing equations, for simply supported conditions, Navier's solution technique is used to obtain results. Plate material properties vary across thickness direction according to exponential distribution law. In the current theory, transverse shear stresses are distributed accurately through the plate thickness, hence obviates the need for a shear correction factor. TSDT results are compared with those from other theories to ensure the accuracy and effectiveness of the present theory. The current theory is in excellent agreement with the semi-analytical theory.

The Characteristics of Various Deviation by Block Adjustment According to GCP Arrangement (GCP 배치에 따른 Block 조정의 오차 전파 특성)

  • Kang, Joon-Mook;Um, Dae-Yong;Kang, Young-Mi;Jeon, Kyong-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.3 s.21
    • /
    • pp.29-40
    • /
    • 2002
  • In photogrammetry, the accuracy is analyzed by using the coordinate of the targeted position determined by the geometric principle, thus, the reliability depends on the accuracy of the coordinate of the targeted position. Thereby, geographic surveying is essential to perform such tasks, and it requires approximately $30{\sim}50%$ of total cost and times to produce a finalized map. The main purpose of this study is to determine the configuration of the disposition of minimum datum points and their configuration, which were determined by surveying values available through using the structure of block model based on the aerotriangulation. ortho projection image was produce and digital topographic map was achieved by the optima model(CASE7). We also performed comparative analysis about the result of local datum point and the accuracy of overlapping based on the surveying results. Consequently, it is possible to analyze the unknown position accurately with the optimal model., CASE 7, which is the minimum datum points configuration required to block adjustment. Furthermore, this optimal model, which provides the minimum datum points, results costs and time saving effects compared to the previous methodology.

  • PDF

Free In-plane Vibration of a Clamped Circular Plate (고정된 원형 플레이트의 평면내 자유진동)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.836-839
    • /
    • 2005
  • The in-plane vibration response of a clamped circular plate should be predicted in many applications. Up to now, papers on the in-plane vibration of rectangular plate are published. However, analytical derivation on the in-plane vibration of the clamped circular plate is not carried out. Therefore, the in-plane vibration of the clamped circular plate is the concern of this paper. In order to derive the equations of motion for the clamped circular plate in the cylindrical coordinate, the kinetic energy and potential energy for the in-plane behavior are obtained by us ing the stress-strain-displacement expressions. Application of Hamilton's principle leads to two sets of differential equations. These displacement equations were highly coupled. It is possible to obtain a simpler set of equations by introducing Helmholtz decomposition. Substituting them into the coupled differential equations, we obtain the uncoupled equations of motion. In order to solve them, we assume that the solutions are harmonic. Then, they lead to the wave equations. Using the separation of variable, we obtain the general solutions for the equations. Based on the solutions, the displacements for r and $\theta$ direction are assumed. Finally we obtain the frequency equation for the clamped circular plate by the application of boundary conditions. The derived equation is compared with the finite element analysis for validation by using the some numerical examples.

  • PDF