• Title/Summary/Keyword: Principal Component Model

Search Result 469, Processing Time 0.03 seconds

On the Bayesian Statistical Inference (베이지안 통계 추론)

  • Lee, Ho-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.263-266
    • /
    • 2007
  • This paper discusses the Bayesian statistical inference. This paper discusses the Bayesian inference, MCMC (Markov Chain Monte Carlo) integration, MCMC method, Metropolis-Hastings algorithm, Gibbs sampling, Maximum likelihood estimation, Expectation Maximization algorithm, missing data processing, and BMA (Bayesian Model Averaging). The Bayesian statistical inference is used to process a large amount of data in the areas of biology, medicine, bioengineering, science and engineering, and general data analysis and processing, and provides the important method to draw the optimal inference result. Lastly, this paper discusses the method of principal component analysis. The PCA method is also used for data analysis and inference.

  • PDF

Probabilistic condition assessment of structures by multiple FE model identification considering measured data uncertainty

  • Kim, Hyun-Joong;Koh, Hyun-Moo
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.751-767
    • /
    • 2015
  • A new procedure is proposed for assessing probabilistic condition of structures considering effect of measured data uncertainty. In this procedure, multiple Finite Element (FE) models are identified by using weighting vectors that represent the uncertainty conditions of measured data. The distribution of structural parameters is analysed using a Principal Component Analysis (PCA) in relation to uncertainty conditions, and the identified models are classified into groups according to their similarity by using a K-means method. The condition of a structure is then assessed probabilistically using FE models in the classified groups, each of which represents specific uncertainty condition of measured data. Yeondae bridge, a steel-box girder expressway bridge in Korea, is used as an illustrative example. Probabilistic condition of the bridge is evaluated by the distribution of load rating factors obtained using multiple FE models. The numerical example shows that the proposed method can quantify uncertainty of measured data and subsequently evaluate efficiently the probabilistic condition of bridges.

Analysis of the Impact of Trade Facilitation on China's Trade - Focused on APEC countries - (무역원활화가 중국 수출입에 미치는 영향 분석 - APEC 국가 중심으로 -)

  • Xuan Zhou;Chang-Hwan Choi
    • Korea Trade Review
    • /
    • v.47 no.4
    • /
    • pp.1-14
    • /
    • 2022
  • This study examines the impact of trade facilitation on China's trade for the period 2010-2017 using a gravity model with a measurement of APEC trade facilitation through principal component analysis. The empirical results confirmed that trade facilitation was a key factor to have a positive effect on Chinese exports and that the higher the level of trade facilitation in APEC countries, the more positive the increase in exports and quantities with China. Further, the size of the economy, the total population, and the border between the trading partner had a positive effect on Chinese trade volume. To promote economic growth through increase in trade volume, countries should actively improve trade facilitation and participate in global trade facilitation reform through continuous cooperation with trading partners.

A Case Study on the Evaluation of Environmental Health Status based on Environmental Health Indicators (환경보건지표를 이용한 지역 환경보건수준 평가 사례연구)

  • Jung, Soon-Won;Lee, Young-Mee;Hong, Sung-Joon;Chang, Jun-Young;Yu, Seung-Do;Choi, Kyung-Hee;Park, Choong-Hee
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.5
    • /
    • pp.302-313
    • /
    • 2016
  • Objectives: This study was conducted to assess environmental health status on a local scale using environmental health-related indicators. It demonstrated the possibility of using a structural equation model, a methodological approach to provide synthesized information. Methods: Eighteen indicators were selected from official statistical data published by local governments. Each environmental health-related indicator was classified according to the PSR (pressure-state-response) model. Aggregation methods were performed using principal component analysis and fuzzy sets. Results: The five principal components were classified through principal component analysis (PCA) and obtained eigenvalues >1.0 from the initial 18 indicators. The aggregated index was obtained by condensing the original information into two broad and simple categories through fuzzy sets. Conclusion: This could be useful in that the aggregation procedure may provide a basis for establishing environmental health policies and a decision-making process. However, the availability and quality of indicators, assessment of aggregation method bias, choice of weighted scores for indicators, and other factors should be examined in future studies.

Demension reduction for high-dimensional data via mixtures of common factor analyzers-an application to tumor classification

  • Baek, Jang-Sun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.3
    • /
    • pp.751-759
    • /
    • 2008
  • Mixtures of factor analyzers(MFA) is useful to model the distribution of high-dimensional data on much lower dimensional space where the number of observations is very large relative to their dimension. Mixtures of common factor analyzers(MCFA) can reduce further the number of parameters in the specification of the component covariance matrices as the number of classes is not small. Moreover, the factor scores of MCFA can be displayed in low-dimensional space to distinguish the groups. We propose the factor scores of MCFA as new low-dimensional features for classification of high-dimensional data. Compared with the conventional dimension reduction methods such as principal component analysis(PCA) and canonical covariates(CV), the proposed factor score was shown to have higher correct classification rates for three real data sets when it was used in parametric and nonparametric classifiers.

  • PDF

A Constructing the Composite Index using Unobserved Component Model and its Application (비관측요인모형을 이용한 종합지표 작성 및 적용)

  • Kang, Gi-Choon;Kim, Myung-Jig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.220-227
    • /
    • 2014
  • This paper introduces and applies the World Bank's methodology for constructing composite index or aggregating indicators. After recalculating the world competitiveness index of IMD using Unobserved Component Model(UCM) we compare it with the existing index and try to find some implications. We also try to construct the composite index for measuring the performance of local finance. We employ the Principal Component Analysis(PCA) for validating the appropriateness of selected indicators used in making the composite index. We found that the UCM and PCA are very useful and will be used widely in various evaluations such as regional development, local finance, local competitiveness and public enterprise, etc.

PCA-based neuro-fuzzy model for system identification of smart structures

  • Mohammadzadeh, Soroush;Kim, Yeesock;Ahn, Jaehun
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1139-1158
    • /
    • 2015
  • This paper proposes an efficient system identification method for modeling nonlinear behavior of civil structures. This method is developed by integrating three different methodologies: principal component analysis (PCA), artificial neural networks, and fuzzy logic theory, hence named PANFIS (PCA-based adaptive neuro-fuzzy inference system). To evaluate this model, a 3-story building equipped with a magnetorheological (MR) damper subjected to a variety of earthquakes is investigated. To train the input-output function of the PANFIS model, an artificial earthquake is generated that contains a variety of characteristics of recorded earthquakes. The trained model is also validated using the1940 El-Centro, Kobe, Northridge, and Hachinohe earthquakes. The adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. It is demonstrated from the training and validation processes that the proposed PANFIS model is effective in modeling complex behavior of the smart building. It is also shown that the proposed PANFIS produces similar performance with the benchmark ANFIS model with significant reduction of computational loads.

Design of fuzzy logic Run-by-Run controller for rapid thermal precessing system (고속 열처리공정 시스템의 퍼지 Run-by-Run 제어기 설계)

  • Lee, Seok-Joo;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.104-111
    • /
    • 2000
  • A fuzzy logic Run-by-Run(RbR) controller and an in -line wafer characteristics prediction scheme for the rapid thermal processing system have been developed for the study of process repeatability. The fuzzy logic RbR controller provides a framework for controlling a process which is subject to disturbances such as shifts and drifts as a normal part of its operation. The fuzzy logic RbR controller combines the advantages of both fuzzy logic and feedback control. It has two components : fuzzy logic diagnostic system and model modification system. At first, a neural network model is constructed with the I/O data collected during the designed experiments. The wafer state after each run is assessed by the fuzzy logic diagnostic system with featuring step. The model modification system updates the existing neural network process model in case of process shift or drift, and then select a new recipe based on the updated model using genetic algorithm. After this procedure, wafer characteristics are predicted from the in-line wafer characteristics prediction model with principal component analysis. The fuzzy logic RbR controller has been applied to the control of Titanium SALICIDE process. After completing all of the above, it follows that: 1) the fuzzy logic RbR controller can compensate the process draft, and 2) the in-line wafer characteristics prediction scheme can reduce the measurement cost and time.

  • PDF

Development of Regression Models Resolving High-Dimensional Data and Multicollinearity Problem for Heavy Rain Damage Data (호우피해자료에서의 고차원 자료 및 다중공선성 문제를 해소한 회귀모형 개발)

  • Kim, Jeonghwan;Park, Jihyun;Choi, Changhyun;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.801-808
    • /
    • 2018
  • The learning of the linear regression model is stable on the assumption that the sample size is sufficiently larger than the number of explanatory variables and there is no serious multicollinearity between explanatory variables. In this study, we investigated the difficulty of model learning when the assumption was violated by analyzing a real heavy rain damage data and we proposed to use a principal component regression model or a ridge regression model after integrating data to overcome the difficulty. We evaluated the predictive performance of the proposed models by using the test data independent from the training data, and confirmed that the proposed methods showed better predictive performances than the linear regression model.

Wafer state prediction in 64M DRAM s-Poly etching process using real-time data (실시간 데이터를 위한 64M DRAM s-Poly 식각공정에서의 웨이퍼 상태 예측)

  • 이석주;차상엽;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.664-667
    • /
    • 1997
  • For higher component density per chip, it is necessary to identify and control the semiconductor manufacturing process more stringently. Recently, neural networks have been identified as one of the most promising techniques for modeling and control of complicated processes such as plasma etching process. Since wafer states after each run using identical recipe may differ from each other, conventional neural network models utilizing input factors only cannot represent the actual state of process and equipment. In this paper, in addition to the input factors of the recipe, real-time tool data are utilized for modeling of 64M DRAM s-poly plasma etching process to reflect the actual state of process and equipment. For real-time tool data, we collect optical emission spectroscopy (OES) data. Through principal component analysis (PCA), we extract principal components from entire OES data. And then these principal components are included to input parameters of neural network model. Finally neural network model is trained using feed forward error back propagation (FFEBP) algorithm. As a results, simulation results exhibit good wafer state prediction capability after plasma etching process.

  • PDF