• Title/Summary/Keyword: Primary frequency control

Search Result 260, Processing Time 0.025 seconds

Operation of Battery Energy Storage System for Governor Free and its Effect (주파수추종 운전 적용을 위한 BESS의 운용 방법 및 효과)

  • Cho, Sung-Min;Jang, Byung-Hoon;Yoon, Yong-Bum;Jeon, Woong-Jae;Kim, Chulwoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.16-22
    • /
    • 2015
  • As the development of Battery Energy Storage System(BESS) and the increasing of intermittent energy sources like wind power and photovoltaic, the application of BESS in load frequency control is considered as an effective method. To evaluate the effectiveness of BESS application in frequency control, we defined a governor free model of BESS to conduct dynamic simulation. Using the BESS dynamic model, we implemented the power system dynamic model including steam, gas and hydro turbine generators. In this paper we study the control performance of BESS in primary frequency control. The effect of BESS speed regulation rate and response time on governor free operation is investigated. In addition, we compared BESS from steam turbine generator in view point of frequency regulation.

A Position Control of Brushless DC Motor for Power Installation with Binary Control (바이너리제어를 이용한 동력설비용 브러시리스 직류전동기의 위치제어)

  • 유완식;조규민;김영석
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.4
    • /
    • pp.55-61
    • /
    • 1995
  • Variable structure control (VSC) can be used for the control of power plants required stability and robustness such as elevator control. It has no overshoot and is insensitive to parameter variations and disturbances in the sliding mode where the system structure is changed with the sliding surface in the center. But in the real system, VSC has a high frequency chattering which has a bad influence upon the control system proformances. In this paper, to alleviate the high frequency chattering, a binary controller (BC) with inertial type external loop is implemented by DSP and applied to position control of brushless DC motor. Binary controller has external loop to generate the continuous control input with the flexible variation of primary loop gain. Thus it has the property of chattering alleviation in addition to advantages of the conventional variable structure control.

  • PDF

Determination of Secondary Reserve Requirement Through Interaction-dependent Clearance Between Ex-ante and Ex-post

  • Kim, Sun Kyo;Park, Joon-Hyung;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • This paper discusses a method for the determination of frequency control reserve requirement with consideration of the interaction between ex-ante planning and real-time balancing. In proposed method, we consider the fact that the delivered energy for tertiary control reserve is determined based on required capacity for secondary control reserve and the expected amount of load errors. Uncertain load errors are derived by Brownian motion, an optimization method is suggested using a stochastic programming. In a short, we propose an interactive dependent method for determining secondary control reserve requirement based on the principle that it satisfies to minimize the total cost. As a result, this paper provides will analyze for an example model to demonstrate the capabilities of the method.

Studies on X-Y Chromosome Dissociation Induced by Environmental Mutagens in Mouse (환경성 돌연변이원에 의한 Mouse의 X-Y 염색체 조기분리에 관한 연구)

  • 윤경희;이원호
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.599-605
    • /
    • 1998
  • The purpose of this work was to examine whether X-Y chromosome dissociation in the primary spermatocytes of mice could be used as an in vivo short-term assaying system that detect environmental mutagens. Four alkylating agents(EMS, MMS, MMC and MNNG) which were known as strong mutagens were administered to BALB/c male mice 3-4 months old. In the control group, the mean frequencies of previously dissociated X and Y chromosomes and autosomes were 7.17% and 2.12%, respectively. Compared to the control group, mutagen-treated groups have no significant differences in dissociation rate of autosomes, while these poops were about 1.2-2.5 times higher in the frequencies of X-Y dissociation. Generally, X-Y dissociation frequency increased consistently with the concentration of mutagens whereas the tendency of autosome dissociation frequency was variable among several mutagens. These results suggest that X-Y dissociation in the primary spermatocytes of mice is applicable as an vivo short-term assaying system for environmental mutagens. There were significantly distinct increase in dissociation of X-Y chromosome in both the hybrid and parents but the X-Y previous dissociation of hybrid appeared higher frequency than BALB /c and wild mice. These results indicate that the factor related to binding X-Y chromosome is specific to strains.

  • PDF

Dynamics and instability of the Karman wake mode induced by periodic forcing

  • Mureithi, Njuki W.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.265-280
    • /
    • 2004
  • This paper presents some fundamental results on the dynamics of the periodic Karman wake behind a circular cylinder. The wake is treated like a dynamical system. External forcing is then introduced and its effect investigated. The main result obtained is the following. Perturbation of the wake, by controlled cylinder oscillations in the flow direction at a frequency equal to the Karman vortex shedding frequency, leads to instability of the Karman vortex structure. The resulting wake structure oscillates at half the original Karman vortex shedding frequency. For higher frequency excitation the primary pattern involves symmetry breaking of the initially shed symmetric vortex pairs. The Karman shedding phenomenon can be modeled by a nonlinear oscillator. The symmetrical flow perturbations resulting from the periodic cylinder excitation can also be similarly represented by a nonlinear oscillator. The oscillators represent two flow modes. By considering these two nonlinear oscillators, one having inline shedding symmetry and the other having the Karman wake spatio-temporal symmetry, the possible symmetries of subsequent flow perturbations resulting from the modal interaction are determined. A theoretical analysis based on symmetry (group) theory is presented. The analysis confirms the occurrence of a period-doubling instability, which is responsible for the frequency halving phenomenon observed in the experiments. Finally it is remarked that the present findings have important implications for vortex shedding control. Perturbations in the inflow direction introduce 'control' of the Karman wake by inducing a bifurcation which forces the transfer of energy to a lower frequency which is far from the original Karman frequency.

Bi-Directional Wireless Power Transfer for Vehicle-to-Grid Systems

  • Sun, Yue;Jiang, Cheng;Wang, Zhihui;Xiang, Lijuan;Zhang, Huan
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1190-1200
    • /
    • 2018
  • A current sourced bi-directional wireless power transfer (WPT) system is proposed to solve the problems that exist in the bi-directional WPT for vehicle-to-grid (V2G) systems. These problems include the fact that these systems are not safe enough, the output power is limited and the control methods are complicated. Firstly, the proposed system adopts two different compensation and control methods on both the primary and secondary sides. Secondly, based on an AC impedance analysis, the working principle is analyzed and the parameter configuration method with frequency stability is given. In order to output a constant voltage, a bi-directional DC/DC circuit and a controllable rectifier bridge are adopted, which are based on the "constant primary current, constant secondary voltage" control strategy. Finally, the effectiveness and feasibility of the proposed methods are verified by experimental results.

Speed Sensorless Control of Induction Motors in the Very Low Speed Region Considering the Secondary Resistance Identification using Flux Signal (자속정보를 이용한 2차저항 동정기능을 갖는 유도전동기의 저속영역 속도센서리스 제어)

  • Lee, Z.G.;Jeong, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.308-310
    • /
    • 2001
  • This paper investigates a novel speed sensorless control method of I.M considering the secondary resistance identification based on the transientless torque control technique. Especially, this paper aimed at the identification of the secondary resistance simultaneously with speed estimation superposing of sinusoidal flux wave to a constant flux value. Furthermore, the secondary flux with some frequency is controlled independently on torque control. The proposed speed estimation method is derived from a motor circuit equation theoretically and also it can be conducted easily by detecting primary motor currents and primary voltage commands at every sampling time. Some numerical simulations with the assumption of using a pulse width modulation(PWM) voltage source inverter are performed to verify the proposed method.

  • PDF

Active Noise Control of a Closed Rectangular Cavity Using FXLMS Algorithms (FXLMS 알고리듬을 이용한 사각밀폐공간의 능동소음제어)

  • Ryu, Kyung-Wan;Hong, Chin-Suk;Shin, Chang-Joo;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.983-990
    • /
    • 2011
  • This paper investigates active noise control(ANC) of a rectangular cavity using single channel filtered-x least mean square(FXLMS) algorithms to globally reduce the interior noise. To obtain the global reduction of the interior noise, multichannel active control should be incorporated in general. We, however, examined firstly the optimal location of the secondary source that produces a global reduction of the interior noise field using single channel control. We then investigated the frequency characteristics of the reduction to yield the effective frequency band of the active control system. It follows that the secondary source should be located as close to the primary source as possible in order to obtain the global reduction.

Design of a High-Precision Constant Current AC-DC Converter with Inductance Compensation

  • Chang, Changyuan;Xu, Yang;Bian, Bin;Chen, Yao;Hu, Junjie
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.840-848
    • /
    • 2016
  • A primary-side regulation AC-DC converter operating in the PFM (Pulse Frequency Modulation) mode with a high precision output current is designed, which applies a novel inductance compensation technique to improve the precision of the output current, which reduces the bad impact of the large tolerance of the transformer primary side inductance in the same batch. In this paper, the output current is regulated by the OSC charging current, which is controlled by a CC (constant current) controller. Meanwhile, for different primary inductors, the inductance compensation module adjusts the OSC charging current finely to improve the accuracy of the output current. The operation principle and design of the CC controller and the inductance compensation module are analyzed and illustrated herein. The control chip is implemented based on a TSMC 0.35μm 5V/40V BCD process, and a 12V/1.1A prototype has been built to verify the proposed control method. The deviation of the output current is within ±3% and the variation of the output current is less than 1% when the inductances of the primary windings vary by 10%.

A Novel IPT System Based on Dual Coupled Primary Tracks for High Power Applications

  • Li, Yong;Mai, Ruikun;Lu, Liwen;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.111-120
    • /
    • 2016
  • Generally, a single phase H-bridge converter feeding a single primary track is employed in conventional inductive power transfer systems. However, these systems may not be suitable for some high power applications due to the constraints of the semiconductor switches and the cost. To resolve this problem, a novel dual coupled primary tracks IPT system consisting of two high frequency resonant inverters feeding the tracks is presented in this paper. The primary tracks are wound around an E-shape ferrite core in parallel which enhances the magnetic flux around the tracks. The mutual inductance of the coupled tracks is utilized to achieve adjustable power sharing between the inverters by configuring the additional resonant capacitors. The total transfer power can be continuously regulated by altering the pulse width of the inverters' output voltage with the phase shift control approach. In addition, the system's efficiency and the control strategy are provided to analyze the characteristic of the proposed IPT system. An experimental setup with total power of 1.4kW is employed to verify the proposed system under power ratios of 1:1 and 1:2 with a transfer efficiency up to 88.7%. The results verify the performance of the proposed system.