• Title/Summary/Keyword: Primary Consolidation

Search Result 96, Processing Time 0.025 seconds

Calculation of Consolidation Settlement considering Primary and Secondary Settlement (1차와 2차 침하를 고려한 압밀침하량 계산식의 제안)

  • Lee, Dal-Won;Jeong, Seong-Gyu
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.159-162
    • /
    • 2003
  • In this study, it was proposed that a modified equation for estimating consolidation settlement on soft clay ground, which separate total settlement into primary and secondary settlement equation. The settlement by the proposed equation and by the measured settlements from laboratory model test was compared and verified for its application. It was appeared that the proposed equation from the laboratory model test approached to be more realistic comparing to the result of Terzaghi's equation. From the above application, it was concluded that the final settlement prediction by the Hyperbolic, Asaoka methods is needed to measure the initial period of settlement but the proposed equation could be much applicable in the lacking condition of measured data of the initial period.

  • PDF

The Influence of Load Increment Ratio on the Secondary Consolidation (하중증가율(荷重增加率)이 이차압밀(二次壓密)에 미치는 영향(影響))

  • Chee, In Taeg;Kang, Yea Mook
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.110-117
    • /
    • 1983
  • This study was conducted to investigate the influence of load increment ratio on the secondary consolidation for the marine clay at Asan bay by the hyperbola method. The results were summarized as follow: 1. Calculated secondary consolidation by the hyperbola method was slightly less than the value of Casagrande's log t method, but the difference was very little, and the secondary consolidation could be easily calculated by the hyperbola method even if load increment ratio was small. 2. The secondary consolidation ratio was increased with the decrement of load increment ratio, and the creep phenomenon of the settlement curve occurred under the condition of small load increment ratio seemed to be caused by the secondary consolidation. 3. The secondary consolidation ratio occurred during the primary consolidation was irregular in the overconsolidated range, but it was increased with the decrement of load increment ratio in the normally consolidated range. 4. The coefficient of secondary consolidation was increased with the increment of the consolidation load, made a point of the inflection near preconsolidation. And the coefficient of secondary consolidation was decreased from consolidation load $2kg/cm^2$, showed independent of load increment ratio. 5. The coefficient of secondary consolidation was showed in proportion to compression index.

  • PDF

Characteristics of 1D-Consolidation for Soft Clay Ground Based on a Elasto-Viscous Model (탄-점성 이론에 의한 점성토 지반의 1차원 압밀특성)

  • Baek, Won-Jin;Ha, Sung-Ho;Lee, Kang-Il;Kim, Jin-Young;Kim, Ju-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.49-58
    • /
    • 2010
  • In this study, in order to investigate the characteristics of secondary consolidation in the soft clay ground, oedometer tests were carried out in a normally consolidated condition, and the consolidation characteristics of the soft clay ground were examined by the Finite Difference Method (FDM) based on the Elasto-Viscous model proposed by Yoshikuni. The consolidation tests adjusted the consolidation load increment ratio(${\Delta}p/p_0$) to 1.0 for the four cases with initial consolidation pressures of 0.8, 1.6, 3.2, and 6.4 kgf/$cm^2$. The long-term consolidation tests were examined by the tests that changed the load increment ratio to clarify the effect of consolidation load increment. Although the numerical analysis was delayed in the primary consolidation process, from the result of the numerical analysis of the laboratory tests, the applicability of the Elasto-Viscous model was verified from the agreement of the secondary consolidation process. Based on the developing of model ground consist of general soft clay, influences of consoliation parameters on the consolidation characteristics were studied by the numerical analysis.

Vacuum distribution with depth in vertical drains and soil during preloading

  • Khan, Abdul Qudoos;Mesri, G.
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.377-389
    • /
    • 2014
  • The vacuum consolidation method which was proposed by Kjellman in 1952 has been studied extensively and used successfully since early 1980 throughout the world, especially in East and Southeast Asia. Despite the increased successful use, different opinions still exist, especially in connection to distribution of vacuum with depth and time in vertical drains and in soil during preloading of soft ground. Porewater pressure measurements from actual cases of field vacuum and vacuum-fill preloading as well as laboratory studies have been examined. It is concluded that (a) a vacuum magnitude equal to that in the drainage blanket remains constant with depth and time within the vertical drains, (b) as expected, vacuum does not develop at the same rate within the soil at different depths; however, under ideal conditions vacuum is expected to become constant with depth in soil after the end of primary consolidation, and (c) there exists a possibility of internal leakage in vacuum intensity at some sublayers of a soft clay and silt deposit. A case history of vacuum loading with sufficient subsurface information is analyzed using the ILLICON procedure.

The Study of Secondary Compression Index on Soft Clays (점성토의 2차압축지수에 관한 연구)

  • 윤일형;서정석;도헌영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.537-544
    • /
    • 2002
  • Deformations of clays continue beyond the end of primary consolidation: this is secondary consolidation. Mesri(1973) have shown that C $\_$a/' is related to the natural water content W$\_$n/. For clays, C $\_$a/' is approximately equal to 0.01 W $\_$n/. And the ratio C $\_$ae// C $\_$c/ is approximately equal to 0.04. In this study, coefficient of secondary compression was analyzed by the consolidation tests datas in the 3 sites. In conclusion, coefficient of secondary compression was similar to Mesri's suggestions.

  • PDF

Load-Settlement Characteristics of Concrete TOP-BASE Foundation on Soft Ground (팽이기초공법(Top-Base Method)의 하중-침하량 분석)

  • Kim, Jae-Young;Jeong, Sang-Seom;Lee, Jae-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.210-221
    • /
    • 2009
  • A new foundation type which is called Top-Base method has been used frequently in engineering practices in Korea. In this study, the settlement behavior of concrete Top-Base foundation on soft ground is investigated since the consolidation settlement of the embedding depth and the effect of footing dimensions are not included in current Korean criterion (2007). To obtain detailed information, the model tests of the Top-Base foundation are performed using the PLAXIS 3D finite element analysis. It is shown that in-situ measurements and finite element analysis of the behavior of foundations indicate that consolidation settlement is reduced up and bearing capacity of the foundation increases up to 50%~100%, compared to the primary non-treated ground. Based on this study, it is found that the Top-Base foundation prevents the lateral deformation of soft ground and reduces its negative dilatancy to the surface settlement, and that the foundation creates rather uniform stress distribution under it to increase its bearing capacity. It is also found that the total settlement of Top-Base foundation was highly dependent on the consolidation settlement and footing configurations.

  • PDF

Evaluation of Stability and Settlement of In-Situ Capping of Contaminated Sediments Using Zeolites and Sands (제올라이트를 이용한 해저오염토 피복 공법 후 안정성 및 침하 평가)

  • Ji, Subin;Lee, Kicheol;Lee, Jangguen;Kim, Dongwook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.23-33
    • /
    • 2016
  • This study evaluated the stability and deformation subsea foundation after implementation of the contaminant isolation method by covering the contaminated materials using Zeolite and sands under subsea condition. The appropriate contaminant adsorption materials used in this study was selected as Zeolite based on the existing research results due to its efficiency. Safety (or stability) was evaluated by calculation and to analyze deformation after completing the contaminant isolation method. The minimum safety factors from slope stability analyses results were 30.1 and 11.2 depending on subsea submerged conditions and the amount of the maximum primary consolidation settlement from consolidation analysis results was 209.2 mm. In addition, change of consolidation amount with increasing consolidation time was evaluated based on consolidation degree.

$C_a/C_c$ for Marine Clay at Southern Part of Korea by Laboratory Consolidation Tests (실내압밀시험에 의한 남해안 해성점토의 $C_a/C_c$)

  • 김규선;임형덕;이우진
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.87-98
    • /
    • 1999
  • Consolidation settlements on soft clay are often greatly and potentially damaging to structures. Currently, large-scale projects are in planning or progressing in Korea. These structures will be constructed on both thick and soft clay layers, and so the accurate evaluation of magnitude of settlement is required at every step in design and construction. Especially, secondary compression may play an important role in consolidation settlements of soft clay. Generally, the magnitudes of secondary compression are evaluated by laboratory and in-situ consolidation tests. The empirical $C_a/C_c$ may be economical, fast and powerful tool in estimating secondary consolidation settlement. However, the databases of the $C_a/C_c$ at construction site in Korea are insufficient. The purpose of this study is to investigate the relationship of $C_a/C_c$ on marine clay near the southern sea in Korea. A series of incremental loading consolidation tests (measuring base pore water pressure) is peformed. It was found that the $C_a/C_c$ on undisturbed marine clay is 0.0397.

  • PDF

Analysis of the Long-term Settlement Behavior Due to the Additional Embankment on the Waste Lime Landfill in Public Waters Reclaimed Land (공유수면 매립지내 폐석회 매립시설의 추가성토에 따른 장기침하 거동 분석)

  • Kang, Jeong Ku;Yi, Yeun Jeung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • Recently, the reclamation of public waters has been on a downward trend due to environmental problems, but there is a limitation to evaluating environmental characteristics index uniformly. In this study, the stability of settlement behavior on public waters reclaimed land was analyzed using the experimental test. From the primary consolidation influence factors, the characteristics of the waste lime was similar that of clay in process of consolidation. Assuming that the waste lime landfill is the layer reinforced with thin geosynthetic reinforcement, the settlement was predicted by calculating the amount of increase using the Westergaard method. As a result of predicting settlement with degree of consolidation, it was found that the increase in stress was reduced by 40% when the surface layer of the soft ground was reinforce with geotextiles compared to the case where it was not reinforced. In addition, the consolidation behavior characteristics of clay and waste lime were compared using the correlation between the plasticity index and internal friction angle of waste lime. Since the waste lime in the public process of consolidation, it was predicted that long-term settlement will increase further.

Composite Ground Effects on Small Area Replacement Ratio of Sand Piles (면적치환비가 작은 샌드파일 설치지반에서의 복합지반효과)

  • Chun, Byung Sik;Yeoh, Yoo Hyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.57-69
    • /
    • 2001
  • Sand pile is widely used as a ground improvement method. Although the primary purpose of constructing sand pile is accelerating consolidation, composite ground effect also can be gained by constructing sand pile. This study was accomplished to understand composite ground effect on the ground improved by sand piles which were applied as vertical drainage material when area replacement ratio was small relatively. For determining bearing capacities of origin ground and sand piles and analysing interaction between embankment and origin ground, bearing tests and earth pressure monitoring are performed. From the results, it turned out that the contribution of sand pile as a load bearing mechanism is not substantial. However, the bearing capacity of sand pile was increased to sixty percentages when compared with origin ground. The increasement of bearing capacity could be caused the change of consolidation characteristics during the process of consolidation by overburden load. Therefore, the composite ground effects depending on stiffness increasement of sand pile would be estimated as a factor decreasing consolidation settlement.

  • PDF