• Title/Summary/Keyword: Price forecasting

Search Result 299, Processing Time 0.025 seconds

Forecasting the Demand for the Substitution of Next Generations of Digital TV Using Choice-Based Diffusion Models (선택기반확산모형을 이용한 디지털 TV 수요예측)

  • Jeong U-Su;Nam Seung-Yong;Kim Hyeong-Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1116-1123
    • /
    • 2006
  • The methodological framework proposed in this paper addresses the strength of the applied Bass model by Mahajan and Muller(1996) that it reflects the substitution of next generations among products. Also this paper is to estimate and analyze the forecast of demand for products that do not exist in the marketplace. We forecast the sales of digital TV using estimated market share and data obtained by the face to face Interview. In this research, we use two methods to analyze the demand for Digital TV that are the forecasting the Demand for the Substitution and binary logit analysis. The logit analysis is to estimate the decisive factor of purchasing digital TV. The decisive factors are composed of purchasing plan, region, gender, TV price, contents, coverage, income, age, and TV program. We apply the model to South Korea's market for digital TV. The results show that (1) Income, region and TV price play a prominent part which is the decisive factor of purchasing digital TV. (2) We forecaste the demand of digital TV that will be demanded about 18 millions TVs in 2015

  • PDF

A Choice-Based Competitive Diffusion Model with Applications to Mobile Telecommunication Service Market in Korea (선택관점의 경쟁확산모형과 국내 이동전화 서비스 시장에의 응용)

  • Jun, Duk-Bin;Kim, Seon-Kyoung;Cha, Kyung-Cheon;Park, Yoon-Seo;Park, Myoung-Hwan;Park, Young-Sun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.3
    • /
    • pp.267-273
    • /
    • 2001
  • While forecasting sales of a new product is very difficult, it is critical to market success. This is especially true when other products have a highly negative influence on the product because of competition effect. In this paper, we develop a choice-based competitive diffusion model and apply to the case where two digital mobile telecommunication services, that is, digital cellular and PCS services, compete. The basic premise is that demand patterns result from choice behavior, where customers choose a product to maximize their utility. In comparison with Bass-type competitive diffusion models, our model provides superior fitting and forecasting performance. The choice-based model is useful in that it enables the description of such competitive environments and provides the flexibility to include marketing mix variables such as price and advertising.

  • PDF

A Study on the Applicability of Neural Network Model for Prediction of tee Apartment Market (아파트시장예측을 위한 신경망분석 적응가능성에 대한 연구)

  • Nam, Young-Woo;Lee, Jeong-Min
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.2 s.30
    • /
    • pp.162-170
    • /
    • 2006
  • Neural network analysis is expected to enhance the forecasting ability for the real estate market. This paper reviews definition, structure, strengths and weaknesses of neural network analysis, and verifies the applicability of neural network analysis for the real estate market. Neural network analysis is compared with regression analysis using the same sample data. The analyses model the macroeconomic parameters that influence the sales price of apartments. The results show that neural network analysis provides better forecasting accuracy than regression analysis does, what confirms the applicability of neural network analysis for the real estate market.

An Energy Demand Forecasting Model for the Residential and Commercial Sector (민수부문의 에너지원별 수요예측모형)

  • 유병우
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.8 no.2
    • /
    • pp.45-56
    • /
    • 1983
  • This paper presents a generalized fuel choice model in which restrictive constraints on cross-price coefficients as Baughman-Joskow-FEA Logit Model need not be imposed, but all demand elasticities are uniquely determined. The model is applied to estimating aggregate energy demand and fuel choices for the residential and commercial sector. The structural equations are estimated by a generalized least squares procedure using national-level EPB, KDI, BK, KRIS, MOER data for 1965 and 1980, and other related reports. The econometric results support the argument that “third-price” and “fourth-price” coefficients should not be constrained in estimating relative market share models. Furthermore, by using this fuel choice model, it has forecasted energy demands by fuel sources in, the residential and commercial sector until 1991. The results are turned out good estimates to compare with existing demands forecasted from other institutes.

  • PDF

A Study on Demand Forecasting Model of Domestic Rare Metal Using VECM model (VECM모형을 이용한 국내 희유금속의 수요예측모형)

  • Kim, Hong-Min;Chung, Byung-Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.4
    • /
    • pp.93-101
    • /
    • 2008
  • The rare metals, used for semiconductors, PDP-LCS and other specialized metal areas necessarily, has been playing a key role for the Korean economic development. Rare metals are influenced by exogenous variables, such as production quantity, price and supplied areas. Nowadays the supply base of rare metals is threatened by the sudden increase in price. For the stable supply of rare metals, a rational demand outlook is needed. In this study, focusing on the domestic demand for chromium, the uncertainty and probability materializing from demand and price is analyzed, further, a demand forecast model, which takes into account various exogenous variables, is suggested, differing from the previously static model. Also, through the OOS(out-of-sampling) method, comparing to the preexistence ARIMA model, ARMAX model, multiple regression analysis model and ECM(Error Correction Mode) model, we will verify the superiority of suggested model in this study.

Developing Cryptocurrency Trading Strategies with Time Series Forecasting Model (시계열 예측 모델을 활용한 암호화폐 투자 전략 개발)

  • Hyun-Sun Kim;Jae Joon Ahn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.152-159
    • /
    • 2023
  • This study endeavors to enrich investment prospects in cryptocurrency by establishing a rationale for investment decisions. The primary objective involves evaluating the predictability of four prominent cryptocurrencies - Bitcoin, Ethereum, Litecoin, and EOS - and scrutinizing the efficacy of trading strategies developed based on the prediction model. To identify the most effective prediction model for each cryptocurrency annually, we employed three methodologies - AutoRegressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), and Prophet - representing traditional statistics and artificial intelligence. These methods were applied across diverse periods and time intervals. The result suggested that Prophet trained on the previous 28 days' price history at 15-minute intervals generally yielded the highest performance. The results were validated through a random selection of 100 days (20 target dates per year) spanning from January 1st, 2018, to December 31st, 2022. The trading strategies were formulated based on the optimal-performing prediction model, grounded in the simple principle of assigning greater weight to more predictable assets. When the forecasting model indicates an upward trend, it is recommended to acquire the cryptocurrency with the investment amount determined by its performance. Experimental results consistently demonstrated that the proposed trading strategy yields higher returns compared to an equal portfolio employing a buy-and-hold strategy. The cryptocurrency trading model introduced in this paper carries two significant implications. Firstly, it facilitates the evolution of cryptocurrencies from speculative assets to investment instruments. Secondly, it plays a crucial role in advancing deep learning-based investment strategies by providing sound evidence for portfolio allocation. This addresses the black box issue, a notable weakness in deep learning, offering increased transparency to the model.

An Empirical Analysis on the Relationship between Stock Price, Interest Rate, Price Index and Housing Price using VAR Model (VAR 모형을 이용한 주가, 금리, 물가, 주택가격의 관계에 대한 실증연구)

  • Kim, Jae-Gyeong
    • Journal of Distribution Science
    • /
    • v.11 no.10
    • /
    • pp.63-72
    • /
    • 2013
  • Purpose - This study analyzes the relationship and dynamic interactions between stock price index, interest rate, price index, and housing price indices using Korean monthly data from 2000 to 2013, based on a VAR model. This study also examines Granger causal relationships among these variables in order to determine whether the time series of one is useful in forecasting another, or to infer certain types of causal dependency between stochastic variables. Research design, data, and methodology - We used Korean monthly data for all variables from 2000: M1 to 2013: M3. First, we checked the correlations among different variables. Second, we conducted the Augmented Dickey-Fuller (ADF) test and the co-integration test using the VAR model. Third, we employed Granger Causality tests to quantify the causal effect from time series observations. Fourth, we used the impulse response function and variance decomposition based on the VAR model to examine the dynamic relationships among the variables. Results - First, stock price Granger affects interest rate and all housing price indices. Price index Granger, in turn, affects the stock price and six metropolitan housing price indices. However, none of the Granger variables affect the price index. Therefore, it is the stock markets (and not the housing market) that affects the housing prices. Second, the impulse response tests show that maximum influence on stock price is its own, and though it is influenced a little by interest rate, price index affects it negatively. One standard deviation (S.D.) shock to stock price increases the housing price by 0.08 units after two months, whereas an impulse shock to the interest rate negatively impacts the housing price. Third, the variance decomposition results report that the shock to the stock price accounts for 96% of the variation in the stock price, and the shock to the price index accounts for 2.8% after two periods. In contrast, the shock to the interest rate accounts for 80% of the variation in the interest rate after ten periods; the shock to the stock price accounts for 19% of the variation; however, shock to the price index does not affect the interest rate. The housing price index in 10 periods is explained up to 96.7% by itself, 2.62% by stock price, 0.68% by price index, and 0.04% by interest rate. Therefore, the housing market is explained most by its own variation, whereas the interest rate has little impact on housing price. Conclusions - The results of the study elucidate the relationship and dynamic interactions among stock price index, interest rate, price index, and housing price indices using VAR model. This study could help form the basis for more appropriate economic policies in the future. As the housing market is very important in Korean economy, any changes in house price affect the other markets, thereby resulting in a shock to the entire economy. Therefore, the analysis on the dynamic relationships between the housing market and economic variables will help with the decision making regarding the housing market policy.

Modelling and Factor Analysis of Pricing Determinants in the State-Regulated Competitive Market: The Case of Ukrainian Flour Market

  • Dragan, Olena;Berher, Alina;Plets, Ivan;Biloshkurska, Nataliia;Lysenko, Nataliia;Bovkun, Olha
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.211-220
    • /
    • 2021
  • The aim of the study is to implement a factor analysis of the determinants of pricing in a state-regulated competitive market using economic and mathematical modelling methods and to develop ways to improve the pricing environment of the market under study. The purpose of the work defines the main objectives: (i) to investigate the features of the competitive model of the Ukrainian flour market; (ii) to analyse the current price conjuncture of the flour market and the dynamics of the main determinants of pricing; (iii)to develop ways of improving the price situation on the flour market on the basis of the factor analysis on the results of economic and mathematical modelling. In order to ensure the reliability and validity of the research results, the following methods were applied: the logical-dialectical method of scientific knowledge in the study of the main theoretical aspects of flour market functioning, the method of logical generalisation and synthesis, comparison, factor analysis, correlation and regression analysis, the graphical method, etc. It has been shown that pricing in a state-regulated competitive market has its own characteristics. For example, in the flour market the price of goods cannot be influenced by producers (sellers) by any methods, therefore determinants of pricing by indirect influence have been taken into account. The five-factor power model of wheat flour price has been constructed. It was substantiated that the price of wheat flour in Ukraine is mostly influenced by consumer price index (0.92 %). The received complex model of wheat flour price may be used also for medium-term forecasting and working out the ways of price formation optimization in the flour market.

Forecasting drug expenditure with transfer function model (전이함수모형을 이용한 약품비 지출의 예측)

  • Park, MiHai;Lim, Minseong;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.303-313
    • /
    • 2018
  • This study considers time series models to forecast drug expenditures in national health insurance. We adopt autoregressive error model (ARE) and transfer function model (TFM) with segmented level and trends (before and after 2012) in order to reflect drug price reduction in 2012. The ARE has only a segmented deterministic term to increase the forecasting performance, while the TFM explains a causality mechanism of drug expenditure with closely related exogenous variables. The mechanism is developed by cross-correlations of drug expenditures and exogenous variables. In both models, the level change appears significant and the number of drug users and ratio of elderly patients variables are significant in the TFM. The ARE tends to produce relatively low forecasts that have been influenced by a drug price reduction; however, the TFM does relatively high forecasts that have appropriately reflected the effects of exogenous variables. The ARIMA model without the exogenous variables produce the highest forecasts.

A study of an oyster monthly forecasting model using the structural equation model approach based on a panel analysis

  • Sukho Han;Seonghwan Song;Sujin Heo;Namsu Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.1001-1013
    • /
    • 2022
  • The purpose of this study is to build an oyster outlook model. In particular, by limiting oyster items, it was designed as a partial equilibrium model based on a panel analysis of a fixed effect model on aquaculture facilities. The model was built with a dynamic ecological equation (DEEM) system that considers aquaculture and harvesting processes. As a result of the estimation of the initial aquaculture facilities based on the panel analysis, the elasticity of the remaining facility volume in the previous month was estimated to be 0.63. According to Nerlove's model, the adjustment coefficient was interpreted as 0.31 and the adjustment speed was analyzed to be very slow. Also, the relative income coefficient was estimated to be 2.41. In terms of elasticity, it was estimated as 0.08% in Gyeongnam, 0.32% in Jeonnam, and 1.98% in other regions. It was analyzed that the elasticity of relative income was accordingly higher in non-main production area. In case of the estimation of the monthly harvest facility volume, the elasticity of the remaining facility volume in the previous month was estimated as 0.53, and the elasticity of the farm-gate price was estimated as 0.23. Both fresh and chilled and frozen oysters' exports were estimated to be sensitive to fluctuations in domestic prices and exchange rates, while Japanese wholesale prices were estimated to be relatively low in sensitivity, especially to the exchange rate with Japan. In estimating the farm-gate price, the price elasticity coefficient of monthly production was estimated to be inelastic at 0.25.