• 제목/요약/키워드: Pretrained Language Model

검색결과 28건 처리시간 0.019초

전이학습 기반 기계번역 사후교정 모델 검증 (The Verification of the Transfer Learning-based Automatic Post Editing Model)

  • 문현석;박찬준;어수경;서재형;임희석
    • 한국융합학회논문지
    • /
    • 제12권10호
    • /
    • pp.27-35
    • /
    • 2021
  • 기계번역 사후교정 (Automatic Post Editing, APE)이란 번역 시스템을 통해 생성한 번역문을 교정하는 연구 분야로, 영어-독일어와 같이 학습데이터가 풍부한 언어쌍을 중심으로 연구가 진행되고 있다. 최근 APE 연구는 전이학습 기반 연구가 주로 이루어지는데, 일반적으로 self supervised learning을 통해 생성된 사전학습 언어모델 혹은 번역모델이 주로 활용된다. 기존 연구에서는 번역모델에 전이학습 시킨 APE모델이 뛰어난 성과를 보였으나, 대용량 언어쌍에 대해서만 이루어진 해당 연구를 저 자원 언어쌍에 곧바로 적용하기는 어렵다. 이에 본 연구에서는 언어 혹은 번역모델의 두 가지 전이학습 전략을 대표적인 저 자원 언어쌍인 한국어-영어 APE 연구에 적용하여 심층적인 모델 검증을 진행하였다. 실험결과 저 자원 언어쌍에서도 APE 학습 이전에 번역을 한차례 학습시키는 것이 유의미하게 APE 성능을 향상시킨다는 것을 확인할 수 있었다.

병렬 말뭉치 필터링을 적용한 Filter-mBART기반 기계번역 연구 (Filter-mBART Based Neural Machine Translation Using Parallel Corpus Filtering)

  • 문현석;박찬준;어수경;박정배;임희석
    • 한국융합학회논문지
    • /
    • 제12권5호
    • /
    • pp.1-7
    • /
    • 2021
  • 최신 기계번역 연구 동향을 살펴보면 대용량의 단일말뭉치를 통해 모델의 사전학습을 거친 후 병렬 말뭉치로 미세조정을 진행한다. 많은 연구에서 사전학습 단계에 이용되는 데이터의 양을 늘리는 추세이나, 기계번역 성능 향상을 위해 반드시 데이터의 양을 늘려야 한다고는 보기 어렵다. 본 연구에서는 병렬 말뭉치 필터링을 활용한 mBART 모델 기반의 실험을 통해, 더 적은 양의 데이터라도 고품질의 데이터라면 더 좋은 기계번역 성능을 낼 수 있음을 보인다. 실험결과 병렬 말뭉치 필터링을 거친 사전학습모델이 그렇지 않은 모델보다 더 좋은 성능을 보였다. 본 실험결과를 통해 데이터의 양보다 데이터의 질을 고려하는 것이 중요함을 보이고, 해당 프로세스를 통해 추후 말뭉치 구축에 있어 하나의 가이드라인으로 활용될 수 있음을 보였다.

Is ChatGPT a "Fire of Prometheus" for Non-Native English-Speaking Researchers in Academic Writing?

  • Sung Il Hwang;Joon Seo Lim;Ro Woon Lee;Yusuke Matsui;Toshihiro Iguchi;Takao Hiraki;Hyungwoo Ahn
    • Korean Journal of Radiology
    • /
    • 제24권10호
    • /
    • pp.952-959
    • /
    • 2023
  • Large language models (LLMs) such as ChatGPT have garnered considerable interest for their potential to aid non-native English-speaking researchers. These models can function as personal, round-the-clock English tutors, akin to how Prometheus in Greek mythology bestowed fire upon humans for their advancement. LLMs can be particularly helpful for non-native researchers in writing the Introduction and Discussion sections of manuscripts, where they often encounter challenges. However, using LLMs to generate text for research manuscripts entails concerns such as hallucination, plagiarism, and privacy issues; to mitigate these risks, authors should verify the accuracy of generated content, employ text similarity detectors, and avoid inputting sensitive information into their prompts. Consequently, it may be more prudent to utilize LLMs for editing and refining text rather than generating large portions of text. Journal policies concerning the use of LLMs vary, but transparency in disclosing artificial intelligence tool usage is emphasized. This paper aims to summarize how LLMs can lower the barrier to academic writing in English, enabling researchers to concentrate on domain-specific research, provided they are used responsibly and cautiously.

조음장애 아동의 언어학습을 위한 인공지능 애플리케이션 UX/UI 연구 (Artificial intelligence application UX/UI study for language learning of children with articulation disorder)

  • 양은미;박대우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.174-176
    • /
    • 2022
  • 본 논문에서는인공지능(AI; Artificial Intelligence)알고리즘을 활용한 조음 장애 아동들의 '개인화된 맞춤형 학습' 모바일 애플리케이션을 제시한다. 조음과 관련된 빅데이터(Big Data)를 수집-정제-가공한 데이터 셋(Data Set)으로 학습자의 조음 상황 및 정도를 분석, 판단, 예측한다. 특히, 인공지능 활용 시 기존 애플리케이션에 비해 어떻게 개선되고 고도화할수 있는지를 UX/UI(GUI) 측면에서 바라보고 프로토타입 모델을 설계해 보았다. 지금까지 시각적 경험에 많이 치중해 있었다면, 이제는 데이터를 어떻게 가공하여 사용자에게 UX/UI(GUI) 경험을 제공할 수 있는지가 중요한 시점이다. 제시한 모바일 애플리케이션의 UX/UI(GUI)는 딥러닝(Deep Learning)의 CRNN(Convolution Recurrent Neural Network)과 Auto Encoder GPT-3 (Generative Pretrained Transformer)를 활용하여 학습자의 조음 정도와 상황에 맞게 제공하고자 하였다. 인공지능 알고리즘의 활용은 조음 장애 아동들에게 완성도 높은 학습환경을 제공하여 학습효과를 높일 수 있를 것이다. '개인화된 맞춤형 학습'으로 조음의 완성도를 높여서, 대화에 대한 두려움이나 불편함을 갖지 않길 바란다.

  • PDF

그래프 구조를 이용한 악성 댓글 분류 시스템 설계 및 구현 (Design and implementation of malicious comment classification system using graph structure)

  • 성지석;임희석
    • 한국융합학회논문지
    • /
    • 제11권6호
    • /
    • pp.23-28
    • /
    • 2020
  • 인터넷상의 소통을 위해 댓글 시스템은 필수적이다. 하지만 온라인상의 익명성을 악용하여 타인에 대한 부적절한 표현 등의 악성 댓글 또한 존재한다. 악성 댓글로부터 사용자를 보호하기 위해 악성/정상 댓글의 분류가 필요하고 이는 텍스트 분류로 구현할 수 있다. 자연어 처리에서 텍스트 분류는 중요한 주제 중 하나이고 최근 BERT 등 pretrained model을 활용한 연구와 GCN, GAT 등의 그래프 구조를 활용한 연구가 활발히 진행되고 있다. 본 연구에서는 실제 공개된 댓글에 대해 BERT, GCN, GAT 을 활용하여 댓글 분류 시스템을 구현하고 성능을 비교하였다. 본 연구에서는 그래프 기반 모델을 사용한 시스템이 BERT 대비 높은 성능을 보여주었다.

웹 말뭉치에 대한 문장 필터링 데이터 셋 구축 방법 (Sentence Filtering Dataset Construction Method about Web Corpus)

  • 남충현;장경식
    • 한국정보통신학회논문지
    • /
    • 제25권11호
    • /
    • pp.1505-1511
    • /
    • 2021
  • 자연어 처리 분야 내 다양한 작업들에서 높은 성능을 보인 사전 학습된 모델은 대량의 말뭉치를 이용하여 문장들의 언어학적 패턴을 스스로 학습함으로써 입력 문장 내 각 토큰들을 적절한 특징 벡터로 표현할 수 있다는 장점을 갖고 있다. 이러한 사전 학습된 모델의 학습에 필요한 말뭉치를 구축하는 방법 중 웹 크롤러를 이용하여 수집한 경우 웹사이트에 존재하는 문장은 다양한 패턴을 갖고 있기 때문에 문장의 일부 또는 전체에 불필요한 단어가 포함되어 있을 수 있다. 본 논문에서는 웹으로부터 수집한 말뭉치에 대해 신경망 모델을 이용하여 불필요한 단어가 포함된 문장을 필터링하기 위한 데이터 셋 구축 방법에 대해 제안한다. 그 결과, 총 2,330개의 문장을 포함한 데이터 셋을 구축하였다. 또한 신경망 모델을 이용하여 구축한 데이터 셋을 학습시켜 성능을 평가하였으며, BERT 모델이 평가 데이터에 대해 93.75%의 정확도로 가장 높은 성능을 보였다.

오류 유형에 따른 생성요약 모델의 본문-요약문 간 요약 성능평가 비교 (Empirical Study for Automatic Evaluation of Abstractive Summarization by Error-Types)

  • 이승수;강상우
    • 인지과학
    • /
    • 제34권3호
    • /
    • pp.197-226
    • /
    • 2023
  • 텍스트 생성요약은 자연어처리의 과업 중 하나로 긴 텍스트의 내용을 보존하면서 짧게 축약된 요약문을 생성한다. 생성요약 과업의 특성 상 본문의 핵심내용을 요약문에서 보존하는 것은 매우 중요하다. 기존의 생성요약 방법론은 정답요약과의 어휘 중첩도(Lexical-Overlap)를 기반으로 본문의 내용과 유창성을 측정했다. ROUGE는 생성요약 요약모델의 평가지표로 많이 사용하는 어휘 중첩도 기반의 평가지표이다. 생성요약 벤치마크에서 ROUGE가 49점대로 매우 높은 성능을 보임에도 불구하고, 생성한 요약문과 본문의 내용이 불일치하는 경우가 30% 가량 존재한다. 본 연구에서는 정답요약의 도움 없이 본문만을 활용해 생성요약 모델의 성능을 평가하는 방법론을 제안한다. 본 연구에서 제안한 평가점수를 AggreFACT의 라벨과 상관도 분석결과, 다음의 두 가지 경우 가장 높은 상관관계를 보였다. 첫 번째는 Transformer 구조의 인코더-디코더 구조에 대규모 사전학습을 진행한 BART와 PEGASUS 등을 생성요약 모델의 베이스라인으로 사용한 경우이고, 두 번째는 요약문 전체에 걸쳐 오류가 발생한 경우이다.

CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석 (Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.141-154
    • /
    • 2019
  • 인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.