• Title/Summary/Keyword: Prestressed concrete slab

Search Result 114, Processing Time 0.024 seconds

Application of Prestressing Technology for Precast Concrete Pavements (프리캐스트 콘크리트 포장에 프리스트레싱 기법 도입을 위한 검토)

  • Kim, Seong-Min;Park, Hee-Beom;Han, Seung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.337-340
    • /
    • 2008
  • The important factors that should be considered when designing and constructing the precast prestressed concrete pavement were investigated in this study. Those factors included traffic and environmental loads, interaction between the concrete slab and the underlying layers, determination of the slab thickness and the prestressing amount. In addition, the behaviors of the precast prestressed concrete pavement when post-tensioning was applied were analyzed using a finite element model. The effects of the number of anchors, the horizontal resistance of underlying layers, the pavement length, the slab thickness, and the bearing area of the anchorage on the distribution of compressive stresses were analyzed.

  • PDF

Behavior of Post-Tensioned Prestressed Concrete Pavement under Prestress Application (포스트텐션드 콘크리트 포장의 프리스트레스 도입 시 거동 분석)

  • Park, Hee-Beom;Kim, Seong-Min;Kim, Dong-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.137-138
    • /
    • 2009
  • This study was conducted to analyze the behavior of PTCP (Post-Tensioned prestressed Concrete Pavement) under tensioning by performing field tests when the experimental PTCP slab was being constructed.

  • PDF

Numerical assessment of post-tensioned slab-edge column connection systems with and without shear cap

  • Janghorban, Farshad;Hoseini, Abdollah
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.71-81
    • /
    • 2018
  • Introduction of prestressed concrete slabs based on post-tensioned (PT) method aids in constructing larger spans, more useful floor height, and reduces the total weight of the building. In the present paper, for the first time, simulation of 32 two-way PT slab-edge column connections is performed and verified by some existing experimental results which show good consistency. Finite element method is used to assess the performance of bonded and unbonded slab-column connections and the impact of different parameters on these connections. Parameters such as strand bonding conditions, presence or absence of a shear cap in the area of slab-column connection and the changes of concrete compressive strength are implied in the modeling. The results indicate that the addition of a shear cap increases the flexural capacity, further increases the shear strength and converts the failure mode of connections from shear rigidity to flexural ductility. Besides, the reduction of concrete compressive strength decreases the flexural capacity, further reduces the shear strength of connections and converts the failure mode of connections from flexural ductility to shear rigidity. Comparing the effect of high concrete compressive strengths versus the addition of a shear cap, shows that the latter increases the shear capacity more significantly.

FE modelling of low velocity impact on RC and prestressed RC slabs

  • Ganesan, Partheepan;Kumar, S. Venkata Sai
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.515-524
    • /
    • 2019
  • The present study deals with the simulation of low velocity impact on prestressed and reinforced concrete (RC) slabs supported with different end conditions. The prestress is pre-applied on the RC slab in an analytical approach for the prestressed slab. RC slabs with dimensions $500{\times}600{\times}60mm$, $500{\times}600{\times}80mm$ and $500{\times}600{\times}120mm$ were used by changing support condition in two different ways; (i) Opposite sides simply supported, (ii) Adjacent sides simply supported with opposite corner propped. Deflection response of these specimens were found for the impact due to three different velocities. The effect of grade of concrete on deflection due to the impact of these slabs were also studied. Deflection result of $500{\times}500{\times}50mm$ slab was calculated numerically and compared the result with the available experimental result in literature. Finite element analyses were performed using commercially available ANSYS 16.2 software. The effectiveness of prestressing on impact resistant capacity of RC slabs are demonstrated by the way of comparing the deflection of RC slabs under similar impact loadings.

Field Measurement and Analysis of Post-Tensioned Prestressed Concrete Pavement Behavior under Tensioning (현장실험을 통한 포스트텐션드 프리스트레스트 콘크리트 포장의 긴장 시 거동분석)

  • Park, Hee-Beom;Kim, Seong-Min;Kim, Dong-Ho
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.247-256
    • /
    • 2009
  • This research was conducted to analyze the behavior of PTCP (Post-Tensioned prestressed Concrete Pavement) under tensioning by performing field tests when the experimental PTCP slab was being constructed. The displacements in the slab under the environmental loading and tensioning were measured using temperature measurement sensors and displacement transducers. Tensioning was performed three times and appropriateness of tensioning could be determined by investigating the relationship between temperature and displacement, behavior of transverse crack, and daily change in displacement. The results of this study showed that under the first tensioning at very early age, large displacements were observed only near the joints because of the friction between slab and underlying layer and concrete inelasticity. Under consecutive tensioning, displacements were clearly observed all over the slab, but still affected by the friction. In addition, appropriate tensioning ensured the one-slab behavior of the PTCP slab even though cracks existed.

  • PDF

A Study on Flexural Behavior of Precast Prestressed Concrete Hollow Slab Bridge (조립식 PSC 중공슬래브교의 휨거동에 관한 연구)

  • Kim, Ki-Yong;Song, Ha-Won;Kim, Ho-Jin;Byun, Keun-Joo;Kim, Yon-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.524-527
    • /
    • 2004
  • Recently, precast concrete products have been increasingly used in the construction of bridges except for special bridges like long-span bridge due to their easy and high-quality construction. Specially the use of precast prestressed concrete hollow box slab bridges is also increased due to the merits in their construction. Thus, an experimental evaluation of flexural behavior of the precast PSC hollow box slab bridges and a development of effective analytical technique for the behavior are necessary. For the development, experimental study on the flexural behavior of the precast bridges up to ultimate states is needed. In this study, two full-scale precast PSC hollow box slab girders are manufactured and full-scale flexural failure tests of the girders subjected to cyclic loading are carried out. For the failure analysis of the girders, the so-called volume control method is applied to finite element analysis of the precast PSC hollow box slab girders discretized using multi-layered shell elements. The analytical results by the volume control method is verified by comparing with test results.

  • PDF

Conceptual design of prestressed slab bridges through one-way flexural load balancing

  • Arici, Marcello;Granata, Michele Fabio
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.615-642
    • /
    • 2013
  • In this paper a study on prestressed concrete slab bridges is presented. A design philosophy based on the concept of load balancing through prestressing is proposed in order to minimize the effects of delayed deformations due to creep. Aspects related to the stress redistribution inside these bridges for time-dependent phenomena are analyzed and discussed, by applying the principles of aging linear visco-elasticity. Prestressing is seen as an equivalent external load which counterbalances the permanent loads applied to the bridge, nullifying the elastic deflections due to sustained loads, and thus avoiding the related delayed deformations. An optimization of the structural behavior through the use of one-way prestressing is achieved. The determination of a convenient variable depth of slab bridges and the correspondent layout of tendons is considered as a useful means for applying the load balancing concept in actual cases of structures like long cantilevers or bridge decks. A case-study related to the slab bridges built 30 years ago at Jeddah in Saudi Arabia is presented and discussed, in order to show the effectiveness of the proposed approach to the conceptual design of prestressed concrete bridges.

Numerical analysis of temperature and stress distributions in a prestressed concrete slab with pipe cooling (파이프쿨링을 실시한 대형 프리스트레스트 콘크리트 슬래브의 수화열 해석)

  • 주영춘;김은겸;신치범;조규영;박용남
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.275-280
    • /
    • 1999
  • It was analysed the effect of pipe cooling as a measure to avoid thermal cracks due to the heat of hydration during the curing process of a massive prestressed concrete (PSC) slab. PSC slab has a complex three-dimensional shape of which the maximal and minimal thicknesses of cross-section were 2.8 and 0.95m, respectively. Steel pipes of which the diameter was 1 inch were employed for cooling. The horizontal and vertical distances between the contiguous pipes were 0.5 and 0.6m, respectively. One the four layers of cooling pipe were arranged according to the thickness of cross-section. Temperature distribution was calculated by the program developed by the authors, of which the accuracy was verified on a few published papers by the authors. Based on the temperature analysis of the cross-section which had four layers of cooing pipe, the maximum temperature of concrete interior was 54.2$^{\circ}C$ and the maximum differenced between the interior and surface temperatures of concrete was 14.$0^{\circ}C$ and, thereby, the thermal cracking index was 1.1. Upon the stress analysis, the thermal cracking index was 0.92 and the probability of thermal-crack development was 52%. Therefore, it was expected to make it possible to reduce the probability of thermal-crack development in a massive PSC slab by adopting pipe cooling.

  • PDF

Evaluation of Horizontal Shear Strength of Prestressed Hollow-Core Slabs with Cast-in-Place Topping Concrete (프리스트레스트 중공 슬래브와 현장타설된 토핑콘크리트의 수평전단성능 평가)

  • Im, Ju-Hyeuk;Park, Min-Kook;Lee, Deuck-Hang;Seo, Soo-Yeon;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.741-749
    • /
    • 2014
  • Prestressed hollow-core (PHC) slabs are structurally-optimized lightweight precast floor members for long-span concrete structures, which are widely used in construction markets. In Korea, the PHC slabs have been often used with cast-in-place (CIP) topping concrete as a composite slab system. However, the PHC slab members produced by extrusion method use concrete having very low slump, and it is very difficult to make sufficient roughness on the surface as well as to provide shear connectors. In this study, a large number of push-off tests was conducted to evaluate interfacial shear strengths between PHC slabs and CIP topping concrete with the key variable of surface roughness. In addition, the horizontal shear strengths specified in the various design codes were evaluated by comparing to the test results that were collected from literature.