Browse > Article
http://dx.doi.org/10.12989/sem.2019.71.5.515

FE modelling of low velocity impact on RC and prestressed RC slabs  

Ganesan, Partheepan (Department of Civil Engineering, MVGR College of Engineering)
Kumar, S. Venkata Sai (Department of Civil Engineering, Baba Institute of Technology and Sciences)
Publication Information
Structural Engineering and Mechanics / v.71, no.5, 2019 , pp. 515-524 More about this Journal
Abstract
The present study deals with the simulation of low velocity impact on prestressed and reinforced concrete (RC) slabs supported with different end conditions. The prestress is pre-applied on the RC slab in an analytical approach for the prestressed slab. RC slabs with dimensions $500{\times}600{\times}60mm$, $500{\times}600{\times}80mm$ and $500{\times}600{\times}120mm$ were used by changing support condition in two different ways; (i) Opposite sides simply supported, (ii) Adjacent sides simply supported with opposite corner propped. Deflection response of these specimens were found for the impact due to three different velocities. The effect of grade of concrete on deflection due to the impact of these slabs were also studied. Deflection result of $500{\times}500{\times}50mm$ slab was calculated numerically and compared the result with the available experimental result in literature. Finite element analyses were performed using commercially available ANSYS 16.2 software. The effectiveness of prestressing on impact resistant capacity of RC slabs are demonstrated by the way of comparing the deflection of RC slabs under similar impact loadings.
Keywords
finite element; prestressing; low velocity impact; concrete; support conditions; floor slab;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Mastali, M., Naghibdehi, M.G., Naghipour, M. and Rabiee, S.M. (2015), "Experimental assessment of functionally graded reinforced concrete (FGRC) slabs under drop weight and projectile impacts", Construct. Build. Mater., 95, 296-311. https://doi.org/10.1016/j.conbuildmat.2015.07.153.   DOI
2 Mohammad, H., Abdul Awal, A.S.M. and Mohd Yatim, J.B. (2017), "The impact resistance and mechanical properties of concrete reinforced with waste polypropylene carpet fibers", Construct. Build. Mater., 143, 147-157. https://doi.org/10.1016/j.conbuildmat.2017.03.109.   DOI
3 Ngo, T., Mendis, P. and Krauthammer, T. (2007), "Behavior of ultrahigh-strength prestressed concrete panels subjected to blast loading", J. Struct. Eng., 133, 1582-1590. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:11(1582).   DOI
4 Ngo, T.T. and Kim, D.J. (2018), "Shear stress versus strain responses of ultra-high-performance fiber-reinforced concretes at high strain rates", J. Impact Eng., 111, 187-198. https://doi.org/10.1016/j.ijimpeng.2017.09.010.   DOI
5 Nicolaides, D., Kanellopoulos, A., Savva, P. and Petrou, M. (2015), "Experimental field investigation of impact and blast load resistance of Ultra High Performance Fibre Reinforced Cementitious Composites (UHPFRCCs)", Construct. Build. Mater., 95, 566-574. https://doi.org/10.1016/j.conbuildmat.2015.07.141.   DOI
6 Ong, K.C.G, Basheerkhan, M. and Paramasivam, P. (1999), "Resistance of fibre concrete slabs to low velocity projectile impact", Cement Concrete Compos., 21(5-6), 391-401. https://doi.org/10.1016/S0958-9465(99)00024-4.   DOI
7 Prem, P.R., Verma, M., Murthy, A.R., Rajasankar, J. and Bharatkumar, B.H. (2017), "Numerical and theoretical modelling of low velocity impact on UHPC panels", Struct. Eng. Mech., 63(2), 107-115. https://doi.org/10.12989/sem.2017.63.2.207.
8 Peng, Y., Wu, H., Fang, Q., Liu, J.Z. and Gong, Z.M. (2016), "Residual velocities of projectiles after normally perforating the thin ultra-high performance steel fiber reinforced concrete slabs", J. Impact Eng., 97, 1-9. https://doi.org/10.1016/j.ijimpeng.2016.06.006.   DOI
9 Pham, T.M. and Hao, H. (2016), "Review of concrete structures strengthened with FRP against impact loading", Structures, 7, 59-70. https://doi.org/10.1016/j.istruc.2016.05.003.   DOI
10 Prakash, A., Srinivasan, S.M. and Mohan Rao, A.R. (2015), "Numerical investigation on steel fibre reinforced cementitious composite panels subjected to high velocity impact loading", Mater. Design, 83, 164-175. https://doi.org/10.1016/j.matdes.2015.06.001.   DOI
11 Rajai, Z., Al-Rousan, M., Alhassan, A. and Al-Salman, H. (2017), "Impact resistance of polypropylene fiber reinforced concrete two-way slabs", Struct. Eng. Mech., 62(3), 373-380. https://doi.org/10.12989/sem.2017.62.3.373.   DOI
12 Rajput, A. and Iqbal, M.A. (2017), "Ballistic performance of plain, reinforced and pre-stressed concrete slabs under normal impact by an ogival-nosed projectile", J. Impact Eng., 110, 57-71. https://doi.org/10.1016/j.ijimpeng.2017.03.008.   DOI
13 Ramakrishna, G. and Sundararajan, T. (2005), "Impact strength of a few natural fibre reinforced cement mortar slabs: A comparative study", Cement Concrete Compos., 27(5), 547-553. https://doi.org/10.1016/j.cemconcomp.2004.09.006.   DOI
14 Almusallam, T.H., Siddiqui, N.A., Iqbal, R.A. and Abbas, H. (2013), "Response of hybrid-fiber reinforced concrete slabs to hard projectile impact", J. Impact Eng., 58, 17-30. https://doi.org/10.1016/j.ijimpeng.2013.02.005.   DOI
15 Abdel-Kader, M. and Fouda, A. (2014), "Effect of reinforcement on the response of concrete panels to impact of hard projectiles", J. Impact Eng., 63, 1-17. https://doi.org/10.1016/j.ijimpeng.2013.07.005.   DOI
16 Ali, M.A.E.M, Soliman, A.M and Nehdi, M.L. (2017), "Hybridfiber reinforced engineered cementitious composite under tensile and impact loading", Mater. Design, 117, 139-149. https://doi.org/10.1016/j.matdes.2016.12.047.   DOI
17 Almusallam, T.H., Abadel, A.A., Al-Salloum, Y.A., Siddiqui, N.A. and Abbas, H. (2015), "Effectiveness of hybrid-fibers in improving the impact resistance of RC slabs", J. Impact Eng., 81, 61-73. https://doi.org/10.1016/j.ijimpeng.2015.03.010.   DOI
18 Anil, O., Kantar, E. and Yilmaz, M.C. (2015), "Low velocity impact behavior of RC slabs with different support types", Construct. Build. Mater., 93, 1078-1088. https://doi.org/10.1016/j.conbuildmat.2015.05.039.   DOI
19 Bi, K. and Hao, H. (2013), "Numerical simulation of pounding damage to bridge structures under spatially varying ground motions", Eng. Struct., 46, 62-76. https://doi.org/10.1016/j.engstruct.2012.07.012.   DOI
20 Dey, V., Bonakdar, A. and Mobasher, B. (2014), "Low-velocity flexural impact response of fiber-reinforced aerated concrete", Cement Concrete Compos., 49, 100-110. https://doi.org/10.1016/j.cemconcomp.2013.12.006.   DOI
21 Eftekhari, M. and Mohammad, S. (2016), "Multiscale dynamic fracture behavior of the carbon nanotube reinforced concrete under impact loading", J. Impact Eng., 87, 55-64. https://doi.org/10.1016/j.ijimpeng.2015.06.023.   DOI
22 Elavarasi, D. and Mohan, K.S.R. (2018), "On low-velocity impact response of SIFCON slabs under drop hammer impact loading", Construct. Build. Mater., 160, 127-135. https://doi.org/10.1016/j.conbuildmat.2017.11.013.   DOI
23 Tabatabaei, Z.S., Volz, J.S., Keener, D.I. and Gliha, B.P. (2014), "Comparative impact behavior of four long carbon fiber reinforced concretes", Mater. Design, 55, 212-223. https://doi.org/10.1016/j.matdes.2013.09.048.   DOI
24 Ranade, R., Li, V.C., Heard, W.F. and Williams, B.A. (2017), "Impact resistance of high strength-high ductility concrete", Cement Concrete Res., 98, 24-35. https://doi.org/10.1016/j.cemconres.2017.03.013.   DOI
25 Rao, H.S., Ghorpade, V.G., Ramana, N.V. and Gnaneswar, K. (2010), "Response of SIFCON two-way slabs under impact loading", J. Impact Eng., 37(4), 452-458. https://doi.org/10.1016/j.ijimpeng.2009.06.003.   DOI
26 Suaris, W. and Shah, S.P. (1982), "Strain-rate effects in fibrereinforced concrete subjected to impact and impulsive loading", Composites, 13(2), 153-159. https://doi.org/10.1016/0010-4361(82)90052-0.   DOI
27 Teng, T.L., Chu, Y.A., Chang, F.A. and Chin, H.S. (2004), "Simulation model of impact on reinforced concrete", Cement Concrete Res., 34(11), 2067-2077. https://doi.org/10.1016/j.cemconres.2004.03.019.   DOI
28 Teng, T.L., Chu, Y.A., Chang, F.A. and Chin, H.S. (2005), "Numerical analysis of oblique impact on reinforced concrete", Cement Concrete Compos., 27, 481-492. https://doi.org/10.1016/j.cemconcomp.2004.05.005.   DOI
29 Yoo, D.Y., Banthia, N. and Yoon, Y.S. (2017), "Impact resistance of reinforced ultra-high-performance concrete beams with different steel fibers", ACI Struct. J., 114(1), 113-124.   DOI
30 Wang, W. and Chouw, N. (2017), "The behaviour of coconut fiber reinforced concrete (CFRC) under impact loading", Construct. Build. Mater., 134, 452-461. https://doi.org/10.1016/j.conbuildmat.2016.12.092.   DOI
31 Yu, R., Beers, L., Spiesz, P. and Brouwers, H.J.H. (2016), "Impact resistance of a sustainable Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) under pendulum impact loadings", Construct. Build. Mater., 107, 203-215. https://doi.org/10.1016/j.conbuildmat.2015.12.157.   DOI
32 Kang, K. and Kim, J. (2017), "Response of a steel column-footing connection subjected to vehicle impact", Struct. Eng. Mech., 63(1), 125-136. https://doi.org/10.12989/sem.2017.63.1.125.   DOI
33 Farnam, Y., Mohammad, S. and Shekarchi, M. (2010), "Experimental and numerical investigations of low velocity impact behavior of high-performance fiber-reinforced cementbased composite", J. Impact Eng., 37(2), 220-229. https://doi.org/10.1016/j.ijimpeng.2009.08.006.   DOI
34 Foti, D. and Paparella, F. (2014), "Impact behavior of structural elements in concrete reinforced with PET grids", Mech. Res. Communication., 57, 57-66. https://doi.org/10.1016/j.mechrescom.2014.02.007.   DOI
35 Hognestad, E., Hanson, N.W. and McHenry, D. (1956), "Stress distribution in ultimate strength design", J. American Concrete Institute, 52, 1305-1330.
36 Liu, J., Wu, C., Li, J., Su, Y., Shao, R., Liu, Z. and Chen, G. (2017), "Experimental and numerical study of reactive powder concrete reinforced with steel wire mesh against projectile penetration", J. Impact Eng., 109, 131-149. https://doi.org/10.1016/j.ijimpeng.2017.06.006.   DOI
37 Kh, H.M., Ozakca, M. and Ekmekyapar, T. (2017), "Nonlinear FE modelling and parametric study on flexural performance of ECC beams", Struct. Eng. Mech., 62(1), 21-31. https://doi.org/10.12989/sem.2017.62.1.021.   DOI
38 Kumar, V., Iqbal, M.A. and Mittal, A.K. (2018), "Experimental investigation of prestressed and reinforced concrete plates under falling weight impactor", Thin Wall Struct., 126, 106-116. https://doi.org/10.1016/j.tws.2017.06.028.   DOI
39 Li, J., Wu, C. and Liu, Z. (2018), "Comparative evaluation of steel wire mesh, steel fiber and high-performance polyethylene fiber reinforced concrete slabs in blast tests", Thin Wall Struct., 126, 117-126. https://doi.org/10.1016/j.tws.2017.05.023.   DOI
40 Luccioni, B., Isla, F., Codina, R., Ambrosini, D. and Torrijos, M.C. (2017), "Effect of steel fibers on static and blast response of high strength concrete", J. Impact Eng., 107, 23-37. https://doi.org/10.1016/j.ijimpeng.2017.04.027.   DOI
41 Maca, P., Sovjak, R. and Konvalinka, P. (2014), "Mix design of UHPFRC and its response to projectile impact", J. Impact Eng., 63, 158-163. https://doi.org/10.1016/j.ijimpeng.2013.08.003.   DOI
42 Mastali, M., Dalvand, A. and Sattarifard, A.R. (2016), "The impact resistance and mechanical properties of reinforced selfcompacting concrete with recycled glass fibre reinforced polymers", J. Cleaner Product., 124, 312-324. https://doi.org/10.1016/j.jclepro.2016.02.148.   DOI