• Title/Summary/Keyword: Prestressed concrete

Search Result 1,040, Processing Time 0.03 seconds

The study of a practical modeling method for the analysis of dynamic behavior by the mockup test of prestressed concrete girder (PSC I형 거더 실물 모형체 실험을 통한 동적거동특성 분석의 실용적 모델링 기법 연구)

  • Kim, Hyung-Kyu;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.148-156
    • /
    • 2018
  • The integrity assessment of the bridge behavior is generalized by field data of a static load-deformation curve and dynamic properties such as impact factors and natural frequencies. Evaluating it with numerical analysis is a reasonable method. The results of the mockup test and the numerical analysis are corresponded with each other since the behavior of service load proceeds in elastic region. In case of the dynamic behavior of structure, especially for the analysis of vibration, the result of the mockup test differs from the result of numerical analysis a little due to the geometric shape and non-homogeneous materials. In order to converge on these tolerances, this study suggested several numerical models, analyzed the sensitivity and finally offered a practical modeling method for the estimation of bridge on the basis of the result of mockup test. Based on the model substituted concrete section for strands section, the natural frequency of the model composed with axial stiffness of strands or the model applied the modified modulus of elasticity was closest with the result of the mockup test.

Development and Simulation of a Detecting Method using Reflectometry of Electrical Signal (전기적 신호의 반사파 측정법을 적용한 부식 진단 기술의 개발 및 시뮬레이션)

  • Yoon, Seung Hyun;Bang, Su Sik;Shin, Yong-June;Lim, Yun Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.367-372
    • /
    • 2018
  • Defects in aging infrastructures such as pre-stressed concrete bridges and cable bridges can cause a collapse of the entire structure. Defects, however, are often located inside of the structures that they are not visible from the outside. For example, in PSC bridges, because reinforcement steels are encased by exterior covers, corrosion and void on the reinforcement steel cannot be detected with a visual inspection. Therefore, in this paper, a new non-destructive evaluation(NDE) method that can detect defects inside of structures is presented. The new method utilizes sending of electrical signals, a method often utilized in electrical engineering to detect any discontinuities on power cables. In order to confirm the applicability and accuracy of the method, some experiments were conducted in the laboratory. And to overcome the hardship of conducting experiments on real structures due to their enormous size, simualtions were conudcted using a commercial program, COMSOL. The results of the experiments were analyzed and compared to confirm the accuracy of the simualtions.

Lateral Behavior of Hybrid Composite Piles Using Prestressed Concrete Filled Steel Tube Piles (긴장력이 도입된 콘크리트 충전 강관말뚝을 사용한 복합말뚝의 수평거동 특성)

  • Park, No-Won;Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.133-143
    • /
    • 2018
  • Concrete filled steel tube (PCFT) piles, which compose PHC piles inside thin steel pipes, were developed to increase the flexural strength of the pile with respect to the horizontal load. In order to compare the flexural strength of PCFT pile with that of steel pipe pile, several flexural tests were performed on the PCFT and steel pipe piles with the same diameter and the P-M curves for both piles were constructed by the limit state design method. Four test piles were also installed and lateral pile load tests were performed to compare the lateral load capacities and lateral behaviors of the hybrid composite piles using PCFT piles and the existing piles such as HCP and steel pipe piles. The flexural test results showed that the flexural strength of PCFT piles was 18.7% higher than that of steel pipe piles with thickness of 12mm and the same diameter, and the mid-span deflection of piles was 50% lower than that of steel pipe piles at the same bending moment. From the P-M curves, it can be seen that the flexural strength of PCFT piles subjected to the vertical load is greater than that of steel pipe piles, but the flexural strength of PCFT piles subjected to the pullout load is lower than that of steel pipe piles. In addition, field pile load tests showed that the PCFT hybrid composite pile has 60.5% greater lateral load capacity than the HCP and 35.8% greater lateral load capacity than the steel pipe pile when the length of the upper pile in hybrid composite piles was the same.

On-Site Construction Method for U-Girder with Pre-tension and Verification of Analytical Performance of Anchoring Block (프리텐션 U형 거더 현장 제작 방법 및 정착 블록 해석적 성능 검증)

  • Park, Sangki;Kim, Jaehwan;Jung, Kyu-San;Seo, Dong-Woo;Park, Ki-Tae;Jang, Hyun-Ock
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.67-77
    • /
    • 2022
  • In South Korea, U-type girder development was attempted as a means to increase the length of I-type girder, but due to the large self-weight according to the post-tension method, the application of rail bridges of 30m or less is typical. There are not many examples of application of pre-tension type girder. This study does not limit the post-tension method, but applies the pre-tension method to induce a reduction in self-weight and materials used due to the reduction of the cross-section. In addition, we intend to apply the on-site pre-tensioning method using the internal reaction arm of the U-type girder. The prestressed concrete U-type girder bridge is composed of a concrete deck slab and a composite section. Compared to the PSC I-type, which is an open cross-section because the cross section is closed, structural performance such as resistance and rigidity is improved, the safety of construction is increased during the manufacturing and erection stage, and the height ratio is reduced due to the reduction of its own weight. Therefore, it is possible to secure the aesthetic scenery and economical of the bridge. As a result, it is expected that efficient construction will be possible with high-quality factory-manufactured members and cast-in-place members. In this paper, the introduction of the pre-tension method on-site and the analytical performance verification of the anchoring block for tension are included.

A Study of Dynamic Behavior of Segmental U-shaped Prestressed Concrete Girder Applied with Integrated Tensioning Systems (복합긴장방식이 적용된 세그멘탈 U형 거더 동적 거동 특성 연구)

  • Hyunock Jang;Ilyoung Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.369-378
    • /
    • 2024
  • Purpose: This study aims to verify structural stability by manufacturing a 40m full-scale specimen composed of a segmental U-shaped PSC girder with integrated tensioning systems and a concrete slab, proceeding dynamic behavior tests, and compare the results of the tests with the results of numerical analysis. Method: Dynamic behavior tests were conducted on a full-scale, undamaged specimen using an impact hammer, and the natural frequency and damping ratio were measured and compared with numerical analysis techniques and the general damping ratio of the facilities. Result: The natural frequency of the numerical analysis model consisting of a girder and slab composite section was calculated to be 2.561Hz, the natural frequency of the full-scale specimen was measured to be 2.670Hz, and the damping ratio was calculated to be 0.42~0.68%. Conclusion: The natural frequency of the full-scale specimen was found to be 4.3% larger than that of the numerical analysis model. Since the masses of the full-scale specimen and the numerical analysis model are the same as 99.97%, it can be derived that the stiffness of the full-scale specimen has secured structural safety and stability. As a result, the dynamic behavior stability of the specimen was verified. The measured damping ratio of 0.42~0.68% was found to be a stable dynamic behavior compared to the PSC structures damping ratio of 0.5~1.0% in the elastic region.

Changing HCP of Tendon in Wet Soil Considering Local Position and Chloride Concentrations (습윤모래 조건에서 염화물 농도에 따른 텐던의 위치별 HCP의 변화)

  • Ji-Woan Choi;Ja-Ho Bang;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.3
    • /
    • pp.239-245
    • /
    • 2024
  • PS(Prestressed) tendons are under high tensile stress and have a smaller concrete cover than RC(Reinforced Concrete) member, so that the more conservative specifications on corrosion have been proposed for PS member. In this study, three levels of chloride concentrations(0.0 mol/l, 0.125 mol/l, and 0.25 mol/l) were prepared for evaluating the corrosion behavior in different position of 7 strand wires. For accelerating corrosion and measuring the corrosion amount in tendon, the tendon was embedded in partially saturated soil, and HCP(Half Cell Potential) was measured from the soil surface. During the test period of 28 weeks, HCP was measured every two weeks and the corrosion weight in the tendon was measured at 16 and 28 weeks of test period. Through the test, HCP result in tendon increased as the wires were located toward bottom due to high saturation. HCP in the lowest wire position showed an increase by 5.92 % compared to that in top position in 0.25 mol/l condition. The lower the position of the wire contained more saturation, which yielded increasing corrosion amount and HCP in tendon. In addition, the relation between corrosion weight and chloride concentration was quantitatively obtained through regression analysis.

Applicability of Partial Post-Tension Method for Deflection Control of Reinforced Concrete Slabs (RC슬래브의 처짐제어를 위한 상향긴장식 부분PT공법의 적용)

  • Lee, Deuck-Hang;Kim, Kang-Su;Kim, Sang-Sik;Kim, Yong-Nam;Lim, Joo-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.347-358
    • /
    • 2009
  • Recently, it is getting into a good situation for the flat-plate slab system to be applied. The flat-plate slab without beam, however, is often too weak to control deflection properly compared to other typical slab-beam structures, for which the post-tension method is generally regarded as one of best solutions. The post-tension (PT) method can effectively control deflection without increase of slab thickness. Despite this good advantage, however, the application of PT method has been very limited due to cost increase, technical problems, and lack of experiences. Therefore, in order to reduce difficulties on applying full PT method under the current domestic circumstances and to enhance constructability of PT system, this research proposed the partial PT method with top jacking anchorage applied in a part of span as need. For the top jacking anchorage system, the efficiency of deflection control shall be considered in detail because it can vary widely depending on the location of anchorage that can be placed anywhere as need, and tensile stresses induced at back of the anchorage zone also shall be examined. Therefore, in this study, analysis were performed on the efficiency of deflection control depending on the location of anchorage and on tensile stresses or forces using finite element method and strut and tie model in the proposed top jacking anchorage system. The proposed jacking system were also applied to the floor slabs at a construction site to investigate its applicability and the analysis results of slab behavior were compared to the measured values obtained from the PT slab constructed by the partial PT method. The result of this study indicates that the partial PT method can be very efficiently applied with little cost increase to control deflection and tensile stresses in the region as a need basis where problem exists.

A Study on Structural Performance Evaluation of RC Beams Strengthened with CFRP Plate (탄소섬유판으로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Kim Joong-Koo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.6 s.22
    • /
    • pp.212-217
    • /
    • 2004
  • Carbon fiber reinforced plastic(CFRP) plate Is one of the alterative materials for soengthening of reinforced and prestressed connote members due to excellent strength and light weight In this paper, the behavior of beams strengthened with CFRP plate and CFS(Carbon fiber sheet) is observed and analyzed from the test results. Especially specimens with thick plate is tested when large moment and large shear lone appear in same position. The main failure mode is a peeling-off of the CFRP plate near the loading points due to flexural-shear crack, Because of this failure mode, failure load is not linearly proportional to the thickness of CFRP plates. When beam is wrapped with CFS around oかy loading point it does not influence on the failure loads. Depending on the loading pattern, it is necessary to consider different design criteria for reinforced concrete members with external reinforcement. When line moment and large shear force appear in same location, maximum thickness may limit to 0.6mm and ratio between moment of strengthened beam and moment of unstrengthened beam is proposed 1.5-2.0. In order to use the plate of thicker than 6mm, CFS may be extended to the location which moment of strengthened beam is 1.5 times than moment of unstrengthened beam.

A Study on Integrated Control and Safety Management Systems for LNG Membrane Storage Tank (멤브레인식 LNG 저장탱크용 통합제어안전관리시스템에 대한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • In this study, the integrated control and safety management system for a super-large LNG membrane storage tank has been presented based on the investigation and analysis of measuring equipments and safety analysis system for a conventional LNG membrane storage tank. The integrated control and safety management system, which may increase a safety and efficiency of a super-large LNG membrane storage tank, added additional pressure gauges and new displacement/force sensors at the steel anchor between an inner tank and a prestressed concrete structure. The displacement and force sensors may provide clues of a membrane panel failure and a LNG leakage from the inner tank. The conventional leak sensor may not provide proper information on the membrane panel fracture even though LNG is leaked until the leak detector, which is placed at the insulation area behind an inner tank, send a warning signal. Thus, the new integrated control and safety management system is to collect and analyze the temperature, pressure, displacement, force and LNG density, which are related to the tank system safety and leakage control from the inner tank. The digital data are also measured from measurement systems such as displacement and force of a membrane panel safety, LNG level and density, cool-down process, leakage, and pressure controls.

On the Leakage Safety Analysis of $9\%$ Nickel Type LNG Storage Tank with Thermal Resistance Effects (열저항 효과를 고려한 $9\%$ 니켈강재식 LNG 저장탱크의 누설 안전성에 관한 연구)

  • Kim C.K.;Cho S.H.;Suh H.S.;Hong S.H.;Lee S.R.;Kim Y,G.;Kwon B.K.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, the FE analysis has been presented for the leakage safety of $9\%$ nickel type LNG storage tank based on the thermal resistance effects between insulation panels, comer protection and prestressed concrete(PC) structures. The FEM calculated results show that the leakage safety of fiber glass blanket, perlite powder and cellular glass insulators does not guarantee any more due to a strength failure of the insulation structure. But the corner protection and PC structure of outer tank may delay or sustain the leaked LNG of 10 days even though the inner tank and insulation structure are simultaneously failed. This means that $9\%$ nickel steel type LNG storage tank may be safe because of a high strength of the corner protection and outer tank structures.

  • PDF