• Title/Summary/Keyword: Pressurized membrane

Search Result 52, Processing Time 0.017 seconds

Evaluation of Forward Osmosis (FO) Membrane Performances in a Non-Pressurized Membrane System (비가압식 막 공정을 통한 정삼투막 성능 평가)

  • Kim, Bongchul;Boo, Chanhee;Lee, Sangyoup;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.292-299
    • /
    • 2012
  • The objective of this study is to develop a novel method for evaluating forward osmosis (FO) membrane performances using a non-pressurized FO system. Basic membrane performance parameters including water (A) and solute (B) permeability coefficients and unique parameter for FO membrane such as the support layer structural parameter (S) were determined in two FO modes (i.e., active layer faces feed solution (AL-FS) and active layer faces draw solution (AL-DS)). Futhermore, these parameters were compared with those determined in a pressurized reverse osmosis (RO) system. Theoretical water flux was calculated by employing these parameters to a model that accounts for the effects of both internal and external concentration polarization. Water flux from FO experiment was compared to theoretical water fluxes for assessing the reliability of those parameters determined in three different operation modes (i.e., AL-FS FO, AL-DS FO, and RO modes). It is demonstrated that FO membrane performance parameters can be accurately measured in non-pressurized FO mode. Specifically, membrane performance parameters determined in AL-DS FO mode most accurately predict FO water flux. This implies that the evaluation of FO membrane performances should be performed in non-pressurized FO mode, which can prevent membrane compaction and/or defect and more precisely reflect FO operation conditions.

Increase of Recovery Ratio by Two Stage Membrane Process (the Pressurized PVDF Membrane Followed by Submerged PE Membrane) (PVDF 가압식과 PE 침지식 분리막을 결합한 2단 막여과 공정의 성능검토 및 회수율 증대 방안 연구)

  • Kim, Junhyeon;Mun, Baeksu;Jang, Hong-Jin;Kim, Jinho;Kim, Byungseok
    • Membrane Journal
    • /
    • v.23 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Membrane filtration processes are increasingly popular for drinking water treatment that requires high quality of water. But pre-treatment system (Coagulation/Flocculation/Sedimentation) requires increased footprint and installation cost. In addition, 5~10% of the concentrate are formed. In this study, the pressurized PVDF membrane (ECONITY Co., Ltd.) system was tested with surface water (Han River, South Korea) without pre-treatment. As a result, permeate flux was operated between 1 m/d and 2.4 m/d (at $25^{\circ}C$) without chemical cleaning for one year and membrane permeate turbidity was maintained stably under 0.05 NTU regardless of raw water turbidity. And we studied application of concetrate treatment of pressurized PVDF membrane by submerged PE membrane (ECONITY Co., Ltd.). As a result, we increased recovery of total treatment process to 99.5%.

Recovery Increase by Recycling Backwash Residuals in Microfiltration System

  • Yu, Myong-Jin;Pak, Hong-Kyoung;Sung, Il-Wha
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.13-21
    • /
    • 2008
  • With the rise in membrane applications, residuals management has become a growing challenge for membrane system. The primary residuals of MF/UF (microfiltration/ultrafiltration) system results from the wastes generated during backwashing. Many regulatory agencies, utilities, and water process engineers are unfamiliar with the characteristics and methods for treatment and disposal of membrane residuals. Therefore, this study was performed to investigate the backwash residuals water quality from the pressurized system with and without pre-coagulation, and to suggest approaches for the backwash residuals treatment. Pressurized MF system was installed at Guui water intake pumping station and operated with raw water taken from the Han River. We compared performances with and without the recycling backwash residuals at flux conditions, 50 LMH and 90 LMH with and without pre-treatment (coagulation). Based on the results, recycling of backwash residuals in pressurized system with pre-coagulation showed applicability of backwash residuals managements. Moreover, the recovery rate also increased up to over 99%.

Economical selection of optimum pressurized hollow fiber membrane modules in water purification system using RbLCC

  • Lee, Chul-sung;Nam, Young-wook;Kim, Doo-il
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.137-147
    • /
    • 2017
  • A water treatment utility in South Korea operates a large system of pressurized hollow fiber membrane (PHFM) modules. The optimal selection of membrane module for the full scale plant was critical issue and carried out using Risk-based Life Cycle Cost (RbLCC) analysis based on the historical data of operation and maintenance. The RbLCC analysis was used in the process of decision-making for replacing aged modules. The initial purchasing cost and the value at risk during operation were considered together. The failure of modules occurs stochastically depending on the physical deterioration with usage over time. The life span of module was used as a factor for the failure of Poisson's probability model, which was used to obtain the probability of failure during the operation. The RbLCC was calculated by combining the initial cost and the value at risk without its warranty term. Additionally, the properties of membrane were considered to select the optimum product. Results showed that the module's life span in the system was ten years (120 month) with safety factor. The optimum product was selected from six candidates membrane for a full scale water treatment facility. This method could be used to make the optimum and rational decision for the operation of membrane water purification facility.

Gas Permaeation Characteristics of Ceramic Membranes by the Pressurized Sol-Gel Coating Techique (가압 졸-겔 코팅법에 의한 세라믹막의 기체투과 특성)

  • 현상훈;강범석
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.04a
    • /
    • pp.35-35
    • /
    • 1993
  • 튜브형 $\alpha-Al_2O_3$ 담체에 졸-겔 침지코팅법과 가압코팅(pressurized coating) 법으로 boehmite 졸과 극미세 입자 SiO$_2$ 및 TiO$_2$ 졸을 코팅한 후 200$\circ$C~500$\circ$C 에서 열처리하여 복합분리막을 제조하였다.

  • PDF

Hydraulic Cleaning Effect on Fouling Mechanisms in Pressurized Membrane Water Treatment (가압식 멤브레인 수처리에서 수리학적 세정이 파울링 기작에 미치는 영향)

  • Charfi, Amine;Jang, Hoseok;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.519-527
    • /
    • 2017
  • Membrane fouling is the main issue hindering the expansion of low pressure membrane processes for surface water treatment. Therefore, applying periodic hydraulic cleaning for fouling control should be well optimized. Better understanding of membrane fouling associated with periodic hydraulic cleaning would be useful to optimize membrane cleaning strategies. By comparing experimental permeability data with the classical Hermia blocking laws, this study aims at analyzing membrane fouling and understanding dominant fouling mechanisms occurring when filtering a synthetic surface water solution with a pressurized membrane process during six filtration cycles of 30 min each, separated with cyclic cleaning of 1 min by backwashing and forward flushing separately and combined. When applying single cleaning technique, membrane fouling during the first cycles was controlled by complete blocking mechanism while the last cycles were dominated by cake formation. Nevertheless, when combining cleaning technique better membrane regeneration was obtained and fouling was mainly due to cake formation.

Development of Ceramic Composite Membranes for Gas Separation: V. Synthesis of Nanoparticulate Silica Membranes by the Pressurized Sol-Gel Coating Technique (기체분리용 세라믹 복합분리막의 개발 : V. 가압 졸-겔 코팅법에 의한 rrmaltp입자 실리카 막의 합성)

  • 현상훈;윤성필;김준학
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.189-198
    • /
    • 1993
  • A new pressurized sol-gel coating technique forming membrane layers inside pores of the porous support by the simple operation has been developed. Crack-free and reproducible nanoparticulate silica membranes supported on the porous $\alpha$-alumina tube are synthesized by pressurized coating at 600kPa for 2hr. The pore radius and N2 gas permiability at the room temperature of silica membrane layers are 8$\AA$ and 7.0$\times$10-7mol/$m^2$.s.Pa, respectively. The mechanism of N2 gas transfer through synthesized membrane layers is the perfect Knudeen flow, and the thermal stability of the silica composite membranes is excellent upto 40$0^{\circ}C$.

  • PDF

The Pull-out Characteristics of Pressurized Grouting Soil Nailing using Rubber Membrane Packer System (고무막 패커시스템을 적용한 가압 그라우팅 쏘일네일링 공법의 인발거동 특성)

  • Bae, Kyung-Tae;Choi, Kyung-Gyp;Cho, Kook-Hwan;Kim, Hyun-Jung;Kim, Ji-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.405-411
    • /
    • 2008
  • The pressurized grouting soil nailing method using rubber membrane packer system was developed for recycling materials to minimize environmental pollution and reducing construction costs. For this purpose, field pull-out tests were performed to evaluate the characteristics of soil nailing by measuring tensile stresses and axial displacements.

  • PDF

Effect of Inorganic Particles on Organic Fouling in Pressurized Membrane Filtration (가압식 분리막 여과에서 무기입자의 존재가 유기파울링에 미치는 영향)

  • Jang, Hoseok;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.131-137
    • /
    • 2020
  • In this study, effect of inorganic particles on organic fouling was investigated by a laboratory-scaled pressurized membrane filtration. In order to cause organic fouling, sodium alginate (SA) was used as a feed solution. Regardless of the presence of inorganic SiO2 particles, the complete pore blocking played an important role in determining the fouling rate during the initial period of membrane filtration. However, the formation of cake layer resulted in the membrane fouling more dominantly as filtration time progressed. In the presence of inorganic particles, both specific cake resistance and compressibility associated with the membrane fouling formed were relatively lower than that without SiO2 particles. Membrane fouling was more severe at constant flux mode of filtration than that observed at constant pressure mode probably due to the concomitant increase of compressibility of fouling layer with transmembrane pressure (TMP). It was found that the presence of SA and SiO2 particles in feed solution provided the synergistic effect on the hydraulic backwashing to reduce membrane fouling as compared to the SA solution alone without the inorganic particles.

Effect of Coagulated Flocs Broken by the Pressure Pump on Removal Rate and Membrane Fouling of Pressurized MF process (가압펌프에 의해 해체된 플럭이 가압식 막여과 공정의 제거효율 및 막오염에 미치는 영향)

  • Kim, Junhyun;Moon, Baeksu;Park, Jongsu;Cho, Yoonho;Kim, Jinho
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.460-468
    • /
    • 2013
  • This study reviewed optimum dosage rate of coagulant and ability to remove dissolved organic carbon without sedimentation in conventional water purification plant. It was confirmed that floc formated by pre-treatment process was broken by impeller of booster pump. Optimum dosage rate of coagulant was 4 mg/L (as PACl 17%) for floc formation through blend, coagulation and after passing through the pump when turbidity of raw water was less than 10 NTU. And average removal rate of dissolved organic carbon was 43% at that time. Maximum removal rate of dissolved organic carbon was 48%, even though coagulation rate was increased gradually until 8 mg/L (as PACl 17%). So removal rate of dissolved organic carbon is not much improved even if dosage rage of coagulant increase. TMP of PVDF (polyvinylidene flouride) pressurized MF process without pre-treatment operated at 0.54 bar and TMP of PVDF pressurized MF process with pre-treatment operated at 0.41 bar.