DOI QR코드

DOI QR Code

Effect of Inorganic Particles on Organic Fouling in Pressurized Membrane Filtration

가압식 분리막 여과에서 무기입자의 존재가 유기파울링에 미치는 영향

  • Jang, Hoseok (Department of Environmental Engineering, Inha University) ;
  • Kim, Jeonghwan (Department of Environmental Engineering, Inha University)
  • Received : 2020.04.24
  • Accepted : 2020.04.27
  • Published : 2020.04.30

Abstract

In this study, effect of inorganic particles on organic fouling was investigated by a laboratory-scaled pressurized membrane filtration. In order to cause organic fouling, sodium alginate (SA) was used as a feed solution. Regardless of the presence of inorganic SiO2 particles, the complete pore blocking played an important role in determining the fouling rate during the initial period of membrane filtration. However, the formation of cake layer resulted in the membrane fouling more dominantly as filtration time progressed. In the presence of inorganic particles, both specific cake resistance and compressibility associated with the membrane fouling formed were relatively lower than that without SiO2 particles. Membrane fouling was more severe at constant flux mode of filtration than that observed at constant pressure mode probably due to the concomitant increase of compressibility of fouling layer with transmembrane pressure (TMP). It was found that the presence of SA and SiO2 particles in feed solution provided the synergistic effect on the hydraulic backwashing to reduce membrane fouling as compared to the SA solution alone without the inorganic particles.

본 연구에서는 가압식 분리막 여과에서 무기입자의 존재가 유기파울링에 미치는 영향을 관찰하였다. 유기파울링의 유발을 위해 알긴산나트륨(sodium alginate, SA)를 이용한 정밀여과 실험에서 무기 실리카(SiO2) 입자의 존재 유무와 상관없이 분리막 파울링은 여과초기 완전공극막힘에서 여과시간이 경과할수록 케이크 형성에 의해 주로 지배되었다. 그러나 무기입자의 존재 시 정압여과에서 알긴산나트륨 파울링 케이크 비저항값과 압축성은 상대적으로 낮게 관찰되었고 이로 인해 낮은 파울링 속도가 관찰되었다. 동일한 시료를 이용한 정량여과 실험을 수행한 결과 정압여과에 비해 정량여과에서 여과초기 공극막힘현상 및 파울링 속도는 더욱 증가하였다. 이와 같은 현상은 파울링층이 지닌 압축성으로 막간차압의 증가 시 케이크 비저항값이 함께 증가하였기 때문인 것으로 판단된다. 알긴산나트륨과 실리카 입자가 함께 존재 시 알긴산나트륨이 단독으로 존재하는 것보다 수리학적 세정을 통한 파울링 제거효과는 더욱 좋은 것으로 관찰되었다.

Keywords

References

  1. W. Gao, H. Liang, J. Ma, M. Han, Z. Chen, Z. Han, and G. Li, "Membrane fouling control in ultrafiltration technology for drinking water production: A review", Desalination, 272, 1 (2011). https://doi.org/10.1016/j.desal.2011.01.051
  2. P. Xiao, F. Xiao, D. S. Wang, T. Qin, and S. P. He, "Investigation of organic foulants behavior on hollow-fiber UF membranes in a drinking water treatment plant", Sep. Purif. Technol., 95, 109 (2012). https://doi.org/10.1016/j.seppur.2012.04.028
  3. H. Chang, H. Liang, F. Qu, B. Liu, H. Yu, X. Du, G. Li, and S. A. Snyder, "Hydraulic backwashing for low-pressure membranes in drinking water treatment: A review", J. Membr. Sci., 540, 362 (2017). https://doi.org/10.1016/j.memsci.2017.06.077
  4. A. W. Zularisam, A. Ahmad, M. Sakinah, A. F. Ismail, and T. Matsuura, "Role of natural organic matter (NOM), colloidal particles, and solution chemistry on ultrafiltration performance", Sep. Purif. Technol., 78, 189 (2011). https://doi.org/10.1016/j.seppur.2011.02.001
  5. H. Chang, B. Liu, H. Liang, H. Yu, S. Shao, and G. Li, "Effect of filtration mode and backwash water on hydraulically irreversible fouling of ultrafiltration membrane", Chemosphere, 179, 254 (2017). https://doi.org/10.1016/j.chemosphere.2017.03.122
  6. M. T. Alresheedi, B. Barbeau, and O. D. Basu, "Comparisons of NOM fouling and cleaning of ceramic and polymeric membranes during water treatment", Sep. Purif. Technol., 209, 452 (2019). https://doi.org/10.1016/j.seppur.2018.07.070
  7. K. Kimura, Y. Hane, Y. Watanabe, G. Amy, and N. Ohkuma, "Irreversible membrane fouling during ultrafiltration of surface water", Water Res., 38, 3431 (2004). https://doi.org/10.1016/j.watres.2004.05.007
  8. M. Schulz, A. Soltani, X. Zheng, and M. Ernst, "Effect of inorganic colloidal water constituents on combined low-pressure membrane fouling with natural organic matter (NOM)", J. Membr. Sci., 507, 154 (2016). https://doi.org/10.1016/j.memsci.2016.02.008
  9. D. J. Miller, S. Kasemset, D. R. Paul, and B. D. Freeman, "Comparison of membrane fouling at constant flux and constant transmembrane pressure conditions", J. Membr. Sci., 454, 505 (2014). https://doi.org/10.1016/j.memsci.2013.12.027
  10. K. S. Katsoufidou, D. C. Sioutopoulos, S. G. Yiantsios, and A. J. Karabelas, "UF membrane fouling by mixtures of humic acids and sodium alginate: Fouling mechanisms and reversibility", Desalination, 264, 220 (2010). https://doi.org/10.1016/j.desal.2010.08.017
  11. H. C. Kim and B. A. Dempsey, "Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM", J. Membr. Sci., 428, 190 (2013). https://doi.org/10.1016/j.memsci.2012.11.004
  12. J. Hermia, "Constant pressure blocking filtration law application to powder-law non Newtonian fluid", Trans. Inst. Chem. Eng., 60, 183 (1982).
  13. S. Lee and S. River, "Relating organic fouling of reverse osmosis membranes to intermolecular adhesion forces", Environ. Sci. Technol., 40, 980 (2006). https://doi.org/10.1021/es051825h
  14. A. Charfi, H. Jang, and J. Kim, "Membrane fouling by sodium alginate in high salinity conditions to simulate biofouling during seawater desalination", Bioresour. Technol., 240, 106 (2017). https://doi.org/10.1016/j.biortech.2017.02.086
  15. A. Charfi, H. Jang, and J. Kim, "Hydraulic cleaning effect on fouling mechanisms in pressurized membrane water treatment", Membr. J., 27, 519 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.6.519
  16. K. Listiarini, W. Chun, D. D. Sun, and J. O. Leckie, "Fouling mechanism and resistance analyses of systems containing sodium alginate, calcium, alum and their combination in dead-end fouling of nanofiltration membranes", J. Membr. Sci., 344, 244 (2009). https://doi.org/10.1016/j.memsci.2009.08.010