• 제목/요약/키워드: Pressurized System

검색결과 491건 처리시간 0.026초

연료전지용 연료승압 블로어 내부유동장 평가 (Internal Flow Analysis of a Fuel Pressurized Blower for Fuel Cell System)

  • 최가람;장춘만
    • 신재생에너지
    • /
    • 제7권3호
    • /
    • pp.29-35
    • /
    • 2011
  • This paper describes an internal flow characteristics of a fuel pressurized blower, used for 1kW domestic fuel cell system. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is introduced. SST model with scalable wall function is employed to estimate the eddy viscosity. Moving mesh system is applied to the numerical analysis for describing the volume change of a diaphragm cavity in time. Throughout numerical simulation with the modeling of the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Force variations on the lower plate of a diaphragm cavity are evaluated in time. It is found that the driving force at the suction stage of a diaphragm cavity is more necessary than that at the discharging stage.

가압형 고체산화물 연료전지 / 가스터빈 하이브리드 시스템 설계에서 터빈입구 바이패스의 효과 (Effect of Gas Bypass at Turbine Inlet on Design of a Pressurized Solid Oxide Fuel Cell / Gas Turbine Hybrid System)

  • 박성구;손정락;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제11권1호
    • /
    • pp.33-39
    • /
    • 2008
  • Hybrid power generation systems combining a solid oxide fuel cell and a gas turbine is promising due to their high efficiency. In the pressurized hybrid system, the operating condition of the gas turbine may play a critical role in designing the hybrid system. In particular, prevention of surge of the compressor can be a critical issue. The existence of fuel cell between the compressor and the turbine may cause an additional pressure loss and thus compressor operating points tend to approach the surge if the original turbine inlet temperature is pursued. In this study, bypassing some of the turbine inlet gas directly to the turbine exit side is simulated. Its effects on suppressing the surge problem and change in performance characteristics are discussed.

가압식 바닥급기 시스템의 여름철 성층화 경향에 관한 실험적 연구 (An Experimental Study on Thermal Stratification of Pressurized Plenum Underfloor Air Distribution System during Cooling)

  • 김동희;유기형;조동우;서정석;한성필
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.340-345
    • /
    • 2007
  • The underfloor air distribution system has been attracting to architects and building owners as one of valuable system for the renovated and newly office building. In this paper, we discussed the thermal stratification profile of pressurized plenum underfloor air distribution(UFAD) according to indoor setting temperature, diffuser number, diffuser type. For this, the space of office building(H corp.) is selected for measuring the air volume of underfloor diffuser and vertical temperature profile. As a result, the thermal stratification profile is influenced by the number and type of the underfloor diffuser and thermal storage character of the underfloor. Whereas indoor setting temperature have a lower significant impact on thermal stratification.

  • PDF

부속실 급기가압제연시 차압변화에 관한 실험적 연구 (An Experimental Study on the Pressure Differentials during the Pressurized Air Supply to the Elevator Lobby)

  • 김범규;박용환;김홍식
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2009년도 춘계학술논문발표회 논문집
    • /
    • pp.110-119
    • /
    • 2009
  • A fire should be accompanied by the heat and smoke. However, smoke is considered main cause of heavy casualties. Smoke easily spreads away from the fire area to remote space and cause mortal wound for the resident. A technical way effectively protecting the life and property from the smoke is the smoke control system of the building. Pressurized air supply system can be considered to prevent the refuge area from the smoke infiltration that evacuate residents via evacuation route for life safety. This paper is related with performance estimation and the effectiveness of the pressurized air supply system through experiments.

  • PDF

Comparative Study on Water Hammer for Pump Station in High Pressurized Pipes in Kuwait

  • Shim, Kyu Dae;Kang, Yong Suk;Choung, Joon Yeon;Abdellatif, Mohamed;Kim, Dong Kyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.265-269
    • /
    • 2017
  • Because of abrupt changes for velocity in water, transient flow is occurred in practical life. To reduce and avoid the high or low pressure of pipe network system, various surge protection facilities are used to prevent the risk in pipe network system. Especially, we focused on study not only preventing positive and negative pressure but also selecting adequate equipment for high pressurized pipelines. Several critical cases were considered by undertaking a steady state hydraulic study and transient dynamic simulation and we suggested that the surge vessel of various surge protection system was recommended to control high and low pressures on pipeline system in perspective.

  • PDF

외부가압 공기베어링의 동적 특성에 관한 해석 (A Study on the Dynamic Characteristics of an Externally Pressurized Gas Bearing)

  • 김우정;박상신;한동철
    • Tribology and Lubricants
    • /
    • 제7권2호
    • /
    • pp.51-60
    • /
    • 1991
  • For the accurate run-out of a light rotor shaft the sliding bearings supplied with externally pressurized air are effectively applied, and it is important to predict the static and dynamic characteristics of rotor-bearing system. In this study direct numerical method is applied to solve the perturbed Reynolds' equation. To solve it the perturbed dimensionless mass flow rate is used as the boundary condition under the inherently-compensated restrictor. The dynamic characteristics of a rotor supported in the externally pressurized air bearings are analyzed, and as a result the orbit of the journal center is calculated. The theoretical results are investigated and discussed.

스팀분사를 고려한 SOFC/GT 하이브리드 시스템의 설계 성능 비교 분석 (Design Performance Analysis of Solid Oxide Fuel Cell / Gas Turbine Hybrid Systems Considering Steam Injection)

  • 박성구;김동섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3224-3229
    • /
    • 2007
  • This study aims to analyse the influence of steam injection on the performance of hybrid systems combining a solid oxide fuel cell and a gas turbine. The steam is generated by recovering heat from the exhaust gas. Two system configurations, with difference being the operating pressure of the SOFC, are examined and effects of steam injection on performances of the two systems are compared. Two representative gas turbine pressure ratios are simulated and a wide range of both the fuel cell temperature and the turbine inlet temperature is examined. Without steam injection, the pressurized system generally exhibits better system efficiency than the ambient pressure system. Steam injection increases system power capacity for all design cases. However, its effect on system efficiency varies much depending on design conditions. The pressurized system hardly takes advantage of the steam injection in terms of the system efficiency. On the other hand, steam injection contributes to the efficiency improvement of the ambient pressure system in some design conditions. A higher pressure ratio provides a better chance of efficiency increase due to steam injection.

  • PDF

고무막 패커시스템을 적용한 가압 그라우팅 쏘일네일링 공법의 인발거동 특성 (The Pull-out Characteristics of Pressurized Grouting Soil Nailing using Rubber Membrane Packer System)

  • 배경태;최경집;조국환;김현정;김지환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.405-411
    • /
    • 2008
  • The pressurized grouting soil nailing method using rubber membrane packer system was developed for recycling materials to minimize environmental pollution and reducing construction costs. For this purpose, field pull-out tests were performed to evaluate the characteristics of soil nailing by measuring tensile stresses and axial displacements.

  • PDF

INSTRUMENTATION AND CONTROL STRATEGIES FOR AN INTEGRAL PRESSURIZED WATER REACTOR

  • UPADHYAYA, BELLE R.;LISH, MATTHEW R.;HINES, J. WESLEY;TARVER, RYAN A.
    • Nuclear Engineering and Technology
    • /
    • 제47권2호
    • /
    • pp.148-156
    • /
    • 2015
  • Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs) that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C) strategies for a large 1,000 MWe iPWR is described. Reactor system modeling-which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum-is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

비가압식 막 공정을 통한 정삼투막 성능 평가 (Evaluation of Forward Osmosis (FO) Membrane Performances in a Non-Pressurized Membrane System)

  • 김봉철;부찬희;이상엽;홍승관
    • 한국물환경학회지
    • /
    • 제28권2호
    • /
    • pp.292-299
    • /
    • 2012
  • The objective of this study is to develop a novel method for evaluating forward osmosis (FO) membrane performances using a non-pressurized FO system. Basic membrane performance parameters including water (A) and solute (B) permeability coefficients and unique parameter for FO membrane such as the support layer structural parameter (S) were determined in two FO modes (i.e., active layer faces feed solution (AL-FS) and active layer faces draw solution (AL-DS)). Futhermore, these parameters were compared with those determined in a pressurized reverse osmosis (RO) system. Theoretical water flux was calculated by employing these parameters to a model that accounts for the effects of both internal and external concentration polarization. Water flux from FO experiment was compared to theoretical water fluxes for assessing the reliability of those parameters determined in three different operation modes (i.e., AL-FS FO, AL-DS FO, and RO modes). It is demonstrated that FO membrane performance parameters can be accurately measured in non-pressurized FO mode. Specifically, membrane performance parameters determined in AL-DS FO mode most accurately predict FO water flux. This implies that the evaluation of FO membrane performances should be performed in non-pressurized FO mode, which can prevent membrane compaction and/or defect and more precisely reflect FO operation conditions.