• Title/Summary/Keyword: Pressurization

Search Result 336, Processing Time 0.026 seconds

Investigation of changes in abdominal cavity between dyspepsia patients and healthy participants when pressure pain occurs using an algometer combined with an ultrasound device: a non-randomized, controlled, pilot trial (초음파 결합형 압통계를 활용한 압통시 소화불량 환자와 건강인의 복강내 조직 변화 비교: 비무작위 대조군 예비 임상시험)

  • Jinwoong Lim;Taeseong Jeong;Hoseok Jung;Sunny Kang;Chang-Min Choi;Dong Woung Kim
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.43-52
    • /
    • 2023
  • Objectives : The aim of this study was to evaluate the differences in the abdominal cavity between functional dyspepsia patients and healthy people using an algometer combined with an ultrasound device. Methods : A non-randomized, controlled, pilot trial was conducted. Thirty patients in the experimental group and fifteen participants in the control group were recruited. We collected demographical data, and measured abdominal circumference, height of the body cavity, subcutaneous fat thickness, visual analogue scale of dyspepsia symptoms in the experimental group, depth of algometer and pressure of algometer when pressure pain occurred, and the whole ultrasonic image from the beginning of pressurization to the time when pressure pain occurred. The measurements were carried out twice with the duration of 1 week. Generalized linear regression was conducted to adjust baseline characteristics. Results : A total of 45 participants (30 in experimental group, 15 in control group) were recruited and finished the trial. Females were recruited more in the experimental group than in the control group and it was statistically significant. The difference in thickness of abdominal cavity between a second before the pressure pain and at the time when pressure pain occurred was statistically significant on 1st visit, and other measurements were not statistically significant. From the results of the regression analysis, the difference between two groups was statistically significant in the differences in the thickness of stomach and up to abdominal aorta on 1st visit, and the thickness of stomach on 2nd visit, and other measurements were not statistically different. Conclusions : According to the results, there were not statistically significant differences in abdominal examination when pressure pain occurred between dyspepsia patients and healthy people. Further studies are warranted to assess the abdominal examination using devices including algometer and ultrasound devices, regarding the results of the present study.

Conceptual Design of a LOX/Methane Rocket Engine for a Small Launcher Upper Stage (소형발사체 상단용 액체메탄 로켓엔진의 개념설계)

  • Kim, Cheulwoong;Lim, Byoungjik;Lee, Junseong;Seo, Daeban;Lim, Seokhee;Lee, Keum-Oh;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.54-63
    • /
    • 2022
  • A 3-tonf class liquid rocket engine that powers the upper stage of a small launcher and lifts 500 kg payload to 500 km SSO is designed. The small launcher is to utilize the flight-proven technology of the 75-tonf class engine for the first stage. A combination of liquid oxygen and liquid methane has been selected as their cryogenic states can provide an extra boost in specific impulse as well as enable a weight saving via the common dome arrangement. An expander cycle is chosen among others as the low-pressure operation makes it robust and reliable while a specific impulse of over 360 seconds is achievable with the nozzle extension ratio of 120. Key components such as combustion chamber and turbopump are designed for additive manufacturing to a target cost. The engine system provides an evaporated methane for the autogenous pressurization system and the reaction control of the stage. This upper stage propulsion system can be extended to various missions including deep space exploration.

Test Evaluation of a Linerless Composite Propellant Tank Using the Composite Collapsible Mandrel (복합재 분리형 맨드릴을 이용한 라이너 없는 복합재 추진제 탱크에 대한 시험 평가)

  • Seung Yun Rhee;Kwangsoo Kim;Young-Ha Yoon;Moo-Keun Yi;Hee Chul Kim
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.132-139
    • /
    • 2023
  • A linerless composite propellant tank was designed and manufactured by using the carbon fiber-reinforced composite materials which have superior strength-to-weight ratio in order to reduce weight of the tank. In this research, we designed a sub-scale composite propellant tank with a diameter of 800 mm to withstand an MEOP of 1.7 MPa. We manufactured the boss of the tank by using the same composite materials to reduce the thermal expansion difference between the boss and the secondary-bonded composite layers of the barrel in the cryogenic environment. We used the collapsible mandrel to manufacture the tank without any liner. The mandrel was made from epoxy-based composite tooling prepregs to reduce weight of the mandrel. We manufactured the test tanks by laying up the carbon fiber fabric prepregs manually on the mandrel and then applying the autoclave cure process. We performed a proof test, a helium tightness test, a repeated pressurization test, and a burst test in room temperature. The test results demonstrate that the proposed design and manufacture process satisfies all strength requirements as well as an anti-leakage requirement.

An Experimental Study on NOx Emissions with Hydrogen and Natural gas Co-firing for EV burner of GT24 (GT24 가스터빈용 EV 버너의 수소혼소에 따른 질소산화물 배출 특성에 대한 실험적 연구)

  • Jeongjae Hwang;Won June Lee;Kyungwook Min;Do Won Kang;Han Seo Kim;Min Kuk Kim
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.85-91
    • /
    • 2023
  • In this study, an experimental study was conducted on the flame behavior, combustion dynamics, and NOx emission characteristics for hydrogen co-firing with the EV burner which is the first stage combustor of GT24. It was confirmed that as the hydrogen co-firing rate increases, the NOx emission increases. This change was elucidate to be the result of a combination of changes in penetration depth due to changes in fuel density, reduction in fuel mixing due to changes in flame position due to increased flame propagation speed, and oscillation of fuel mixedness due to combustion instability. Through pressurization tests in the range of 1.3 to 3.1 bar, NOx emission characteristics under high-pressure operating conditions were predicted, and based on this, the hydrogen co-firing limits of the EV burner was evaluated.

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

Modelling of Fault Deformation Induced by Fluid Injection using Hydro-Mechanical Coupled 3D Particle Flow Code: DECOVALEX-2019 Task B (수리역학적연계 3차원 입자유동코드를 사용한 유체주입에 의한 단층변형 모델링: DECOVALEX-2019 Task B)

  • Yoon, Jeoung Seok;Zhou, Jian
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.320-334
    • /
    • 2020
  • This study presents an application of hydro-mechanical coupled Particle Flow Code 3D (PFC3D) to simulation of fluid injection induced fault slip experiment conducted in Mont Terri Switzerland as a part of a task in an international research project DECOVALEX-2019. We also aimed as identifying the current limitations of the modelling method and issues for further development. A fluid flow algorithm was developed and implemented in a 3D pore-pipe network model in a 3D bonded particle assembly using PFC3D v5, and was applied to Mont Terri Step 2 minor fault activation experiment. The simulated results showed that the injected fluid migrates through the permeable fault zone and induces fault deformation, demonstrating a full hydro-mechanical coupled behavior. The simulated results were, however, partially matching with the field measurement. The simulated pressure build-up at the monitoring location showed linear and progressive increase, whereas the field measurement showed an abrupt increase associated with the fault slip We conclude that such difference between the modelling and the field test is due to the structure of the fault in the model which was represented as a combination of damage zone and core fractures. The modelled fault is likely larger in size than the real fault in Mont Terri site. Therefore, the modelled fault allows several path ways of fluid flow from the injection location to the pressure monitoring location, leading to smooth pressure build-up at the monitoring location while the injection pressure increases, and an early start of pressure decay even before the injection pressure reaches the maximum. We also conclude that the clay filling in the real fault could have acted as a fluid barrier which may have resulted in formation of fluid over-pressurization locally in the fault. Unlike the pressure result, the simulated fault deformations were matching with the field measurements. A better way of modelling a heterogeneous clay-filled fault structure with a narrow zone should be studied further to improve the applicability of the modelling method to fluid injection induced fault activation.