• Title/Summary/Keyword: Pressureless Sintering

Search Result 164, Processing Time 0.027 seconds

Sintering Behavior of the Net-shaped Fe-8wt%Ni Nanoalloy Powder and Related Mechanical Property

  • Cha, Berm-Ha;Kang, Yun-Sung;Lee, Sung-Ho;Lee, Jai-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.501-502
    • /
    • 2006
  • The present investigation has been performed on full densification behavior and mechanical property of the powder injection molded Fe-8wt%Ni nanoalloy powder. The net shaping process of the nanopowder was conducted by powder injection molding (PIM) process. The key-process for fabricating fully densified net-shaped nanopowder by pressureless sintering is an optimal control of agglomerate size of nanopowder. Enhanced mechanical property of PIMed Fe-Ni nanopowder is explained by grain refinement and microstructural uniformity.

  • PDF

Effect of $\alpha-SiC $seed on microstructure and fracture toughness of pressureless-sintered $\beta-SiC$ ($\alpha-SiC $seed의 첨가가 상압소결된 $\beta-SiC$의 미세구조와 파괴인성에 미치는 영향)

  • Young-Wook Kim;Won-Joong Kim;Kyeong-Sik Cho;Heon -Jin Choi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.18-26
    • /
    • 1997
  • $\beta-SiC $powder with or without the addition of 1 wt% of $\alpha-SiC$ particles (seeds) was pressureless-sintered at $1950^{\circ}C$ for 0.5, 2 and 4 h using $Y_3Al_5O_{12}$ (yttrium aluminum garnet, YAG) as a sintering aid. The introduction of $\alpha-SiC$ seeds into $\beta-SiC$ accelerated :he grain growth of elongated large grains during sintering, resulting in the coarser microstructure. The fracture toughnesses of materials with $\alpha$-SiC seeds and without $\alpha-SiC$ seeds sintered for 4 h were 7.5 and 6.1 $MPa\cdot \textrm m^{1/2}$, respectively. Higher fracture toughness of the material with seeds was due to the enhanced bridging by elongated grains, resulting from coarser microstructure.

  • PDF

Fabrication of Molybdenum Alloys with Improved Fracture Toughness through the Dispersion of Lanthanum Oxide (란타넘 산화물의 분산을 통해 향상된 파괴인성을 갖는 몰리브데넘 합금의 제조)

  • Choi, Won June;Park, Chun Woong;Park, Jung Hyo;Kim, Young Do;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.208-213
    • /
    • 2019
  • In this study, lanthanum oxide ($La_2O_3$) dispersed molybdenum ($Mo-La_2O_3$) alloys are fabricated using lanthanum nitrate solution and nanosized Mo particles produced by hydrogen reduction of molybdenum oxide. The effect of $La_2O_3$ dispersion in a Mo matrix on the fracture toughness at room temperature is demonstrated through the formation behavior of $La_2O_3$ from the precursor and three-point bending test using a single-edge notched bend specimen. The relative density of the $Mo-0.3La_2O_3$ specimen sintered by pressureless sintering is approximately 99%, and $La_2O_3$ with a size of hundreds of nanometers is uniformly distributed in the Mo matrix. It is also confirmed that the fracture toughness is $19.46MPa{\cdot}m^{1/2}$, an improvement of approximately 40% over the fracture toughness of $13.50MPa{\cdot}m^{1/2}$ on a pure-Mo specimen without $La_2O_3$, and this difference in the fracture toughness occurs because of the changes in fracture mode of the Mo matrix caused by the dispersion of $La_2O_3$.

Pressureless Sintering and Microstructure of Pure Tungsten Powders Prepared by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법으로 제조한 텅스텐 분말의 상압소결과 미세조직)

  • Heo, Youn Ji;Lee, Eui Seon;Oh, Sung-Tag;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.247-251
    • /
    • 2022
  • This study demonstrates the effect of the compaction pressure on the microstructure and properties of pressureless-sintered W bodies. W powders are synthesized by ultrasonic spray pyrolysis and hydrogen reduction using ammonium metatungstate hydrate as a precursor. Microstructural investigation reveals that a spherical powder in the form of agglomerated nanosized W particles is successfully synthesized. The W powder synthesized by ultrasonic spray pyrolysis exhibits a relative density of approximately 94% regardless of the compaction pressure, whereas the commercial powder exhibits a relative density of 64% under the same sintering conditions. This change in the relative density of the sintered compact can be explained by the difference in the sizes of the raw powder and the densities of the compacted green body. The grain size increases as the compaction pressure increases, and the sintered compact uniaxially pressed to 50 MPa and then isostatically pressed to 300 MPa exhibits a size of 0.71 m. The Vickers hardness of the sintered W exhibits a high value of 4.7 GPa, mainly due to grain refinement.

Application of Mechanochemical Processing for Preparation of Si3N4-based Powder Mixtures

  • Sopicka-Lizer, Malgorzata;Pawlik, Tomasz
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.337-341
    • /
    • 2012
  • Mechanochemical processing (MCP) involves several high-energy collisions of powder particles with the milling media and results in the increased reactivity/sinterability of powder. The present paper shows results of mechanochemical processing (MCP) of silicon nitride powder mixture with the relevant sintering additives. The effects of MCP were studied by structural changes of powder particles themselves as well as by the resulting sintering/densification ability. It has been found that MCP significantly enhances reactivity and sinterability of the resultant material: silicon nitride ceramics could be pressureless sintered at $1500^{\circ}C$. Nevertheless, a degree of a silicon nitride crystal lattice and powder particle destruction (amorphization) as detected by XRD studies, is limited by the specific threshold. If that value is crossed then particle's surface damage effects are prevailing thus severe evaporation overdominates mass transport at elevated temperature. It is discussed that the cross-solid interaction between particles of various chemical composition, triggered by many different factors during mechanochemical processing, including a short-range diffusion in silicon nitride particles after collisions with other types of particles plays more important role in enhanced reactivity of tested compositions than amorphization of the crystal lattice itself. Controlled deagglomeration of $Si_3N_4$ particles during the course of high-energy milling was also considered.

Homogeneous Mixing of Si3N4 with Sintering Additives by Coprecipitation Method (질화규소의 소결첨가제의 공침법에 의한 균일혼합)

  • 김지순
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.10
    • /
    • pp.829-837
    • /
    • 1993
  • Chemically and geometrically homogeneous mixing of Si3N4 powders with sintering additives(YAG, 3Y2O3$.$5Al2O3) was attempted via coprecipitation method. X-ray dot maps for the additive elements(Al and Y) showed that the additives are evenly distributed in the powder mixture prepared by coprecipitation method(CP). TEM observation of the coprecipittion-treated Si3N4 powders revealed that they are covered with extremely fine crystallites of additive. The shift in isoelectric point(IEP) of Si3N4 powders from pH 6.7 to pH 7.9 after coprecipitation mixing gave another evidence for coating of Si3N4 powders with YAG additives. SIMS analysis for composition on the surface and in the matrix of mixed powders showed that the YAG additives are highly enriched on the surface of coprecipitation-treated Si3N4 powders. Especially when a small amount of additive was used, the effect of homogeneous additive distribution on densification was preceptible: After pressureless-sintering of powder compacts containing 5 mol% YAG at 1800$^{\circ}C$ for 0.5h, a sintered density of 96.5% theoretical was obtained from the specimens prepared bycoprecipitation in comparison with 93.8% from the mechanically-mixed one.

  • PDF

Preparation of Silicon Carbide Ceramics with Self-reinforced Microstructure by the Control of Starting Phases (출발상 제어에 의한 자기복합화 미세구조의 탄화규소 세라믹스 제조)

  • Lee, Jong-Kook;Kang, Hyun-Hee;Lee, Eun-Gu;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1240-1246
    • /
    • 1997
  • Silicon carbides with self-reinforced microstructure which hore a small grain matrix and dispersed large grains with rod-like type were prepared by the liquid-phase sintering and the control of starting phases of raw materials. The specimens with self-reinforced microstructure could be obtained from the compacts with mixed compositions of $\alpha$-SiC and 10-50 % $\beta$-SiC powders and by the pressureless sintering at 185$0^{\circ}C$ for 5h. Large grains with rod or plate-like types were 4H-SiC and small grains with equi-axed type were 6H-SiC. Fracture grains with rod or plate-like types were 4h-SiC and small grains with equi-axed type were 6H-SiC. Fracture toughness of specimens with self-reinforced microstructure was increased by the crack deflection and formation of microcracking due to the existence of rod-like large grains during crack propagation.

  • PDF

Formation of Solid Solution and Microstructure in Processureless sintered SiC-AlN Composite (상압소결에 의하여 제조된 SiC-AlN 복합체에서의 고용체 형성과 미세구조)

  • Lee, Jong-Kook;Kim, Duk-Jun;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.785-792
    • /
    • 1996
  • Formation of Solid Solution and Microstructure in Processureless sintered SiC-AlN compo-site using oxides as a sintering aid at 185$0^{\circ}C$ and 195$0^{\circ}C$ Regardless of SiC/AlN ratio in composition most of sintered specimens showed he complex structure mixed with 2H solid solution and SiC particles. High sintering temperature and large AlN content in starting composition enhanced the formation of 2H solid solution in sintered specimen 2H solid solution showed the spherical shape and core-rim structure. AlN content in the core is higher than that in the rim but SiC content . The size of 2H solid solution on fracture showed the transgranular fracture mode compared with the dispersed SiC particles which showed the intergranular fracture mode.

  • PDF

On the microstructure of pressureless sintered $TiC-TiB_2$ composite refractory (상압소성된 $TiC-TiB_2$ 복합내화재의 미세구조)

  • 심광보;김현기;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.632-639
    • /
    • 1997
  • Relative density and microstructure of the pressureless sintered TiC-$TiB_2$ composite has been studied. The maximum sintered density was 95% and the critical amounts of sintering aids were 1 wt% Fe and 3 wt% Ni. It was found that TiC matrix phase inhibited effectively grain growth of the dispersed $TiB_2$ phase. The TEM investigation reveals that the Ni-rich precipitates were solidified from the liquid phase, confirmed by the presence of the waved and/or step phase boundaries. The precipitates also acts as the origin of the dislocation formation in the matrix phases.

  • PDF

Fabrication and Properties of Densified Tungsten by Magnetic Pulse Compaction and Spark Plasma Sintering (자기펄스 성형 및 방전 플라즈마 소결 공정으로 제조한 텅스텐 소결체의 특성)

  • Lee, Eui Seon;Byun, Jongmin;Jeong, Young-Keun;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.321-325
    • /
    • 2020
  • The present study demonstrates the effect of magnetic pulse compaction and spark plasma sintering on the microstructure and mechanical property of a sintered W body. The relative density of green specimens prepared by magnetic pulse compaction increases with increase in applied pressure, but when the applied pressure is 3.4 GPa or more, some cracks in the specimen are observed. The pressureless-sintered W shows neck growth between W particles, but there are still many pores. The sintered body fabricated by spark plasma sintering exhibits a relative density of above 90 %, and the specimen sintered at 1,600 ℃ after magnetic pulse compaction shows the highest density, with a relative density of 93.6 %. Compared to the specimen for which the W powder is directly sintered, the specimen sintered after magnetic pulse compaction shows a smaller crystal grain size, which is explained by the reduced W particle size and microstructure homogenization during the magnetic pulse compaction process. Sintering at 1,600 ℃ led to the largest Vickers hardness value, but the value is slightly lower than that of the conventional W sintered body, which is attributed mainly to the increased grain size and low sintering density.