Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.6.321

Fabrication and Properties of Densified Tungsten by Magnetic Pulse Compaction and Spark Plasma Sintering  

Lee, Eui Seon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Byun, Jongmin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Jeong, Young-Keun (Graduate School of Convergence Science, Pusan National University)
Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.30, no.6, 2020 , pp. 321-325 More about this Journal
Abstract
The present study demonstrates the effect of magnetic pulse compaction and spark plasma sintering on the microstructure and mechanical property of a sintered W body. The relative density of green specimens prepared by magnetic pulse compaction increases with increase in applied pressure, but when the applied pressure is 3.4 GPa or more, some cracks in the specimen are observed. The pressureless-sintered W shows neck growth between W particles, but there are still many pores. The sintered body fabricated by spark plasma sintering exhibits a relative density of above 90 %, and the specimen sintered at 1,600 ℃ after magnetic pulse compaction shows the highest density, with a relative density of 93.6 %. Compared to the specimen for which the W powder is directly sintered, the specimen sintered after magnetic pulse compaction shows a smaller crystal grain size, which is explained by the reduced W particle size and microstructure homogenization during the magnetic pulse compaction process. Sintering at 1,600 ℃ led to the largest Vickers hardness value, but the value is slightly lower than that of the conventional W sintered body, which is attributed mainly to the increased grain size and low sintering density.
Keywords
tungsten; magnetic pulse compaction; spark plasma sintering; properties;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. W. Davis, V. R. Barabash, A. Makhankov. L. Plochl and K. T. Slattery, J. Nucl. Mater., 258-263, 308 (1998).   DOI
2 E. Lassner and W.D. Schubert, Tungsten: Properties, Chemistry, Technology of the Elements, Alloys, and Chemical Compounds, Kluwer Academic/ Plenum Publishers, New York, USA (1999).
3 I. H. Moon, J. S. Kim and Y. L. Kim, J. Less Common Met., 102, 219 (1984).   DOI
4 Z. Z. Fang and H. Wang, Int. Mater. Rev., 53, 326 (2008).   DOI
5 R. M. Raihanuzzaman, J.-W. Song and S.-J. Hong, J. Alloys Compd., 536, S211 (2012).   DOI
6 J.-H. Kim, I.-H. Oh, J.-H. Lee, S.-K. Hong and H.-K. Park, J. Korean Powder Metall. Inst., 26, 132 (2019) (in Korean).   DOI
7 E. A. Olevsky, A. A. Bokov, G. S. Boltachev, N. B. Volkov, S. V. Zayats, A. M. Ilyina, A. A. Nozdrin and S. N. Paranin, Acta Mech., 224, 3177 (2013).   DOI
8 N. Tamari, T. Tanaka, K. Tanaka, I. Kondoh, M. Kawahara and M. Tokita, J. Ceram. Soc. Jpn., 103, 740 (1995).   DOI
9 R. W. Heckel, Trans. Metall. Soc. AIME, 221, 671 (1961).
10 T. E. M. Staab, R. Krause-Rehberg, B. Vetter, B. Kieback, G. Lange and P. Klimanek, J. Phys.: Condens. Matter., 11, 1787 (1999).   DOI
11 G. Lee, J. McKittrick, E. Ivanov and E. A. Olevsky, Int. J. Refract. Met. Hard Mater., 61, 22 (2016).   DOI
12 J. K. Lee, S. J. Hong, M. K. Lee and C. K. Rhee, Solid State Phenom., 118, 597 (2006).   DOI
13 H.-S. Kim, J.-G. Lee, C.-K. Rhee, J.-M. Koo and S.-J. Hong, J. Korean Powder Metall. Inst., 18, 411 (2008) (in Korean).   DOI
14 O. El-Atwani, D. V. Quach, M. Efe, P. R. Cantwell, B. Heim, B. Schultz, E. A. Stach, J. R. Groza and J. P. Allain, Mater. Sci. Eng., A, 528, 5670 (2011).   DOI