Journal of Korean Association of Crystal Growth

Vol. 7, No. 1 (1997) 18-26

Effect of a-SiC seed on microstructure and
fracture toughness of pressureless-sintered (-SiC

Young-Wook Kim, Won-Joong Kim, Kyeong-Sik Cho* and Heon-Jin Choi*
Department of Materials Science and Engineering, Seoul City University, Seoul 130- 743, Korea
*Division of Ceramics, Korea Institute of Science and Technology, Seoul 130-650, Korea

a-SiC seed®) A717} AtadR B-SiCH AT E}
e R DR E R L

A, das, =HA", He
NeAduete AEFY, A¢, 130-743
rqFoarled T AGHadTR, A&, 130-650

Abstract B-SiC powder with or without the addition of 1 wt% of @-SiC particles (seeds)
was pressureless-sintered at 1950°C for 0.5, 2 and 4 h using Y3;ALO:. {yttrium aluminum
garnet, YAG) as a sintering aid. The introduction of @-SiC seeds into (- SiC accelerated
the grain growth of elongated large grains during sintering, resulting in the coarser micro-
structure. The fracture toughnesses of materials with a@-SiC seeds and without @-SiC seeds
sintered for 4 h were 7.5 and 6.1 MPa-m!/? respectively. Higher fracture toughness of the
material with seeds was due to the enhanced bridging by elongated grains, resulting from

coarser microstructure.
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1. Introduction

Silicon carbide is a difficult material to
sinter because of the covalent nature of
its bond. The pressureless sintering of SiC
through solid state sintering was pioneered
by Prochazka [1], who found that small
additions of B and C drastically improve
the shrinkage kinetics of SiC. The resul-
ting SiC materials consisted of fine, equi-
axed grains (grain size 1~5 g m) and sh-
owed improved high-temperature strength
and creep, wear, oxidation, and corrosion
resistance [2,5]. However, the low frac-
ture toughness (2.5~4 MPa-m'?) limited
their use in many potential structural ap-
plications, even though, in comparison to
other ceramics, their superior other proper-
ties.

Omori and Takei’'s work [6] on the pr-
essureless sintering of SiC opened the pos-
sibility of the liquid phase sintering of
SiC. The interest in liquid phase sintered
SiC has grown continually during past
years, because such materials seem to su-
perior to solid state sintered SiC in me-
chanical properties [7-10].

Several reports have been published on
in situ-toughened SiC [11-15], akin to Si;N,
[1622]. The

toughness has been achieved through de-

improvement of fracture
velopment of elongated @-SiC grains; ‘i.e.,
microstructural control for toughening was

based on B-— a phase transformation of

Z)k
=1

g4 7%k

SiC [8,11-14]. Higher toughness of in
situ-toughened materials was due to crack
bridging [11] or crack deflection [14] by
large elongated grains as evidenced by R-
curve behavior [23]. A fracture toughness
of 8 MPa-m!/? has been reported in oxide-
doped, liquid - phase -sintered Si-C [11-15].

Recently, silicon carbide nanoceramics
(grain size~0.1 ¢ m) were fabricated fr-
om very fine B-SiC powders by hot-press-
ing [24]. In situ-toughened SiC with du-
plex microstructure has been fabricated by
annealing the nanoceramics at a tempera-
ture as low as 1850°C without appreciable
B— «a phase transformation [23]. Previous
study also have shown that a wide parti-
cle size distribution in starting a-SiC pow-
der gives enough driving force for abnor-
mal grain growth of some a-SiC grains
and result In a duplex microstructure
[25]. Further microstructural control and
optimization in SiC is crucially dependent
on an increased knowledge of how a-SiC
seeds affect the microstructure and frac-
ture toughness in £-SiC.

In the present work, fine-grained g-SiC
was selected as the matrix for in situ-
toughened microstructure, and the effect
of @-SiC seeds addition on microstructure
and fracture toughness of pressureless sin-

tered B-SiC was investigated.
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2. Experimental procedure

Commercially available fine B-SiC pow-
der (Ibiden Co., Ogaki, Japan, Ultrafine
grade) and relatively coarse a-SiC powder
(Showa Denko K.K., Tokyo, Japan, A-1
grade) were used as starting powders.
For higher sintered density, 8-SiC and e-
SiC powders were oxidized at 550°C for
0.5 h under air. It was recognized that
oxidation of SiC powders, prior to liquid
phase sintering, increased the oxygen con-
tent and decreased carbon content, resu-
lting in the higher sintered density [26].
The powder characteristics of starting po-
wders and oxidized powders are shown in
Table 1.

To prepare a powder composition with-
out seeds, 88 wt% gB-SiC (oxidized pow-
der) and 12 wt% Y3Al0; (yttriumal-
uminum garnet, YAG, 99.9 % pure, High
Purity Chemicals, Chiyoda Sakado, Japan)

were ball milled in ethanol with SiC grind-
ing balls for 24 h. To prepare a powder
composition containing seeds, 87 wt% f-
SiC (oxidized powder) and 12 wt% YAl
0,, were ball milled in ethanol for 22 h,
and then 1 wt% a-SiC seeds (oxidized
powder) were added, followed by addit-
ional milling for 2 h. The milled slurry
was dried, uniaxially pressed at 20 MPa,
and isostatically pressed at 140 MPa. Sin-
tering was performed in a graphite resis-
tance furnace. The specimens were sin-
tered at a heating rate of 600°C/h and
maintained at 1950°C for 0.5, 2, and 4 h
in argon. A powder bed with the same
composition as the specimens was used to
supress the weight loss of the specimens
[27].

The relative density was determined by
the Archimedes method. X-ray diffraction

using Cuk, radiation was performed on all

the ground specimens. The sintered speci-

Table 1
Characteristics of SiC powders
No. Powder Specific Impurities Phase
le{giace Si0, Free C
(m¥/g) (wt%) (Wt%)
1 B-SiC powder* 16.7 1.55 0.75 8
-(Ibiden Co., Ultrafine grade)
2 Powder 1 was oxidized 15.7 5.06 0.06 B
at 550C for 0.5 h under air
3 a-SiC powder* 11.7 1.23 0.46 a
(Showa Denko K.K., A-1 grade)
4 Powder 3 was oxidized 11.3 4.50 0.04 a

at 550°C for 0.5 h under air

*Data were supplied from manufacturers.
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Table 2
Characteristics of sintered SiC

No. Composition (wt%) Sintering  Relative Crystalline phase
B-SiC a-SiC Y;AlO,; time at density Major Trace
1950°C (h) (%)
1 88 12 0.5 99.0 B-SiC YAG*
2 88 12 2 98.3 a-SiC YAG
3 88 12 4 94.3 a-SiC YAG
4 87 1 12 0.5 99.0 B-SiC YAG, a-SiC
5 87 1 12 2 974 a-SiC YAG
6 87 1 12 4 94.2 a-SiC YAG

* Y3Al0,, (yttrium aluminum garnet).

mens were cut and polished, and then
plasma etched by CF, containing 7.8 % O.,.
The microstructures were observed by
scanning electron microscopy (SEM). The
fracture toughness was estimated by mea-
suring crack lengths generated by a
Vickers indenter with a load of 196 N
[28].

3. Results and discussion

The characteristics of SiC materials ob-
tained with @-SiC seeds and without a-
SiC seeds are summarized in Table 2. The
relative densities of >99 % were a-
chieved by pressureless-sintering with a
holding time of 0.5 h at 1950°C. The sin-
tered densities were found to decrease
with increasing the sintering time. It may
be due to the reactions between SiC and
YAG at sintering temeprature (1950°C)
[29]. These reactions probably result in

the formation of volatile components such

as AlO, ALO, and CO [27-30], which fo-
rm isolated pores inside the specimen, and
make the substantial weight loss and the
reduction of liquid content, leading to the
decrease in the sintered density.

Figure 1 shows the microstructural cha-
nge of SiC materials with sintering time.
The microstructures of 0.5-h sintered ma-
terials with or without @-SiC seeds com-
posed of equiaxed grains and the polytype
of the materials was found to be com-
posed primarily of 3C (B-SiC) by XRD.
When the holding time was increased, the
shape of the grains changed from equi-
axed to elongated and the grain size and
aspect ratio increased, as shown in Figs.
1 (b), (c), (e), and (f), which indicate,
referring to the phase analysis in Table 1,
the marked growth of «-SiC. It is recog-
nized that the 8 — @ phase tranformation
of SiC takes place at high temepratures
(=1950°C), especially in the presence of
proper liquids. The 2- and 4-h sintered
materials with @-SiC seeds (Figs. 1(e)
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Fig. 1. SEM micrographs of SiC materials without seeds sintered at 1950°C for (a) 0.5
(b) 2 and (c) 4 h and SiC materials with seeds sintered at 1950°C for (d) 0.5, (e) 2 and
(f) 4 h.

and (f)) have coarser microstructures
than the equivalent materials without a-
SiC seeds (Figs. 1(b) and (c)). These
results suggest that the addition of a-SiC
seeds into B-SiC accelerates the grain
growth of elongated «@-SiC grains during

sintering and resulted in the coarser mi-

crostructure. Alpha-SiC seeds are believed
to act as nuclel for the grain growth of
elongated large grains. The true shape of
elongated grains is considered presumably
as plate-shaped [23-31].

SEM micrographs of the fracture sur-

face of sintered materials are shown n
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Fig. 2. SEM micrographs of fracture surfaces of SiC materials without seeds sintered at
1950°C for (a) 0.5, (b) 2 and (c) 4 h and SiC materials with seeds sintered at 1950°C
for (d) 0.5, (e) 2 and (f) 4 h.

Fig. 2. As shown, the fracture mode of
0.5-h sintered materials was mostly int-
ergranular. However, substantial transg-
ranular fracture of the larger grains was
observed in 4-h annealed materials. The
rﬁicrostructural development of Figs. 2 (c)

and (f) is similar to the in situ formation

of elongated grains during sintering of
SisN, [16-20]. Such kind of an in situ-
toughened microstructure is beneficial to
the toughening of SiC. The microstructure
of the 4-h annealed material with @-SiC
seeds was very similar to, but having

more porosity than, the recently reported
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high -toughness microstructure of SiC [11,
12].

The effect of isothermal holding time on
the fracture toughness of sintered materi-
als is shown in Fig. 3. The fracture to-
ughness increased with increasing holding
time and showed greater amount of in-
crease In materials with -SiC seeds. The
fracture toughness of 4-h sintered materi-
al (6.1 MPa-m'?)for the material without
a-SiC seeds was 50 % higher than that
of 0.5-h sintered material (4.0 MPa-m'/?),
while the fracture toughness of 4-h sin-
tered material (7.5 MPa-m'?) for the ma-
terial with @-SiC seeds was 80 % higher
than that of 0.5-h sintered material (4.1
MPa-m'/?). When the holding time was in-
creased, the shape of grains changed from
equiaxed (0.5-h sintered materials) to el-
ongated grains (4-h sintered materials)
and the average grain size and average
aspect ratio of grains increased because of

a-SiC grain growth. The increased frac-
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Fig. 3. Relation between fracture tough-

ness of sintered SiC and holding time at
19507C.

ture toughness, therefore, was related to
the microstructure. Several toughening
mechanisms have been reported for the Ii-
quid phase sintered SiC containing elongat-
ed grains, including crack bridging [11]
or crack deflection [14]. Bridging by elon-
gated grains (Fig. 4 (b)) behind the cra-
ck tip in 4-h sintered material and deflec-
tion by small equaxed grains (Fig. 4 (a))
in 0.5-h sintered material were observed.
Therefore, the improved fracture tough-
ness of 4-h sintered material with seeds,
comparing with the 4-h sintered material

without seeds, was attributed to the en-

Fig. 4. SEM view of (a) crack deflection
by equiaxed grains in 0.5-h sintered mate-
rial with seeds and (b) crack bridging by
elongated grains in 4-h sintered material

with seeds.
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hanced crack bridging by elongated gra-

ins, resulting from coarser microstructure.

4. Conclusions

The introduction of @-SiC seeds into 5-
SiC accelerated the grain growth of elon-
gated large grains during sintering, re-
sulting in the coarser microstructure.
Alpha-SiC seeds acted as nuclei for the
grain growth of elongated large grains.
The fracture toughnesses of materials with
a-SiC seeds and without @-SiC seeds sin-
tered for 4 h were 7.5 and 6.1 MPa-m!/?
respectively. Higher fracture toughness of
the material with seeds was due to the
enhanced bridging by elongated grains,

resulting from coarser microstructure.
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