• Title/Summary/Keyword: Pressure-swirl nozzle

Search Result 94, Processing Time 0.029 seconds

DESIGN OF WATER INJECTION NOZZLE OF BIDET WITH COMPUTATIONAL FLUID DYNAMICS (유동해석을 통한 물 분사용 비데 노즐 설계)

  • Choi, Y.S.;Yang, S.S.;Jin, S.W.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.8-12
    • /
    • 2007
  • An optimized bidet nozzle design to form the required swirl water jet is proposed with the help of numerical analysis. The bidet can do the cleaning process of human body by water injection and the speed/pressure/injection angle/magnitude of swirl intensity of water jet determine the cleaning capability and personal subjective feeling. The objective of this research is to design optimal water injection nozzle to make stable swirl intensity. The effect of individual design variables are analyzed from the basic design and the final design is deduced to make high performance water jet within the pre-determined operation conditions.

DESIGN OF WATER INJECTION NOZZLE OF BIDET WITH COMPUTATIONAL FLUID DYNAMICS (유동해석을 통한 물 분사용 비데 노즐 설계)

  • Choi, Y.S.;Yang, S.S.;Jin, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.68-71
    • /
    • 2007
  • An optimized bidet nozzle design to form the required swirl water jet is proposed with the help of numerical analysis. The bidet can do the cleaning process of human body by water injection and the speed/pressure/injection angle/magnitude of swirl intensity of water jet determine the cleaning capability and personal subjective feeling. The objective of this research is to design optimal water injection nozzle to make stable swirl intensity. The effect of individual design variables are analyzed from the basic design and the final design is deduced to make high performance water jet within the pre-determined operation conditions.

  • PDF

BREAKUP LENGTH OF CONICAL EMULSION SHEET DISCHARGED BY PRESSURE-SWIRL ATOMIZER

  • Rhim, Jung-Hyun;No, Soo-Young
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.103-107
    • /
    • 2001
  • Many researches on pressure-swirl injectors due to the variety of application have been conducted on the effects of nozzle design, operating conditions, properties of liquid and ambient conditions on the flow and spray characteristics. The breakup length of conical emulsified fuel sheet resulting from pressure-swirl atomizer using in the oil burner was investigated with the digital image processing method with neat light oil and emulsion with water content of lotto% and the surfactant content of 1-3%. The injection pressure ranged from 0.1 to 1.2 MPa was selected. The various regimes for the stage of spray development within the experimental conditions selected in this study is newly suggested in terms of Ohnesorge number and injection pressure. The breakup length for both criteria show the same tendency even though the random nature of perforation and disintegration process of liquid sheet. The stage of spray development is widely different with the physical properties of liquid atomized, mainly viscosity of liquid. The breakup length decreases smoothly with increase in the injection pressure for the lower viscous liquid.

  • PDF

Study of Supersonic, Dual, Coaxial, Swirl Jet (초음속 이중동축 스월제트 유동특성에 관한 연구)

  • Kim, Jung-Bae;Kim, Heuy-Dong;Lee, Kwon-Hee;Setoguchi, T.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1771-1776
    • /
    • 2003
  • The supersonic swirl jet is being extensively used in many diverse fields of industrial processes since those lead to more improved performance, compared with the conventional supersonic no swirl jet. In the present study, an experiment is carried out to investigate the effect of annular swirl jet on the supersonic dual coaxial jet. A convergent-divergent nozzle with a design Mach number of 1.5 is used for the supersonic primary jet, and the sonic nozzles with four tangential inlets are used to make the secondary swirl jet. The primary jet pressure ratio is varied in the range from 3.0 to 7.0 and the outer annular jet pressure ratio is from 1.0 to 4.0. The interactions between the annular swirl and the inner supersonic jet are quantified by the pitot impact and static pressure measurements and visualized by using the Schlieren optical method. The results show that annular swirl jet alters the shock structure and impact pressure distributions compared with no swirl jet.

  • PDF

Evaluation of the Impact Force on the Single Spray and Overlap Region of Twin Spray in Full Cone Type Swirl Nozzle (Full Cone Type 스월노즐에서 단일분무와 이중분무의 중첩영역에 대한 충격력 평가)

  • Kim, T.H.;Sung,, Y.M.;Jeong, H.C.;Kim, D.J.;Choi, G.M.
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.27-36
    • /
    • 2011
  • The impact force on the single and overlap region of twin spray was experimentally evaluated using visualization method in full cone type swirl nozzle spray. Visualization of spray was conducted to obtain the spray angle and breakup process. The photography/imaging technique, based on Particle Image Velocimetry (PIV) using high-speed camera, was adopted for the direct observation of droplet motion and axial velocity measurement, respectively. Droplet size was measured by Particle Motion Analyze System (PMAS). The purpose of this study is to provide fundamental information of spray characteristics, such as impact force, for higher etching factor in the practical wet etching system. It was found that the spray angle, axial velocity and impact force were increased with increasing the nozzle pressure while droplet size decreased with increasing the nozzle pressure. Droplet size increased as the distance from nozzle tip was decreased. The impact force of twin spray in the overlap region was about 63.29, 67.02, 52.41% higher than that of single spray at 40, 50 and 60 mm of nozzle pitch, respectively. Also, the nozzle pitch was one of the important factors in the twin spray characteristics.

System Performance Variation for Relative Location of Pre-swirl Nozzles and Receiver Holes in Radial On-Board Injection Type Pre-swirl System (반경방향 분사방식 프리스월 시스템의 프리스월 노즐과 리시버 홀의 상대적 위치에 따른 시스템 성능변화)

  • Lee, Jonggeon;Lee, Hyungyu;Cho, Geonhwan;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.43-53
    • /
    • 2020
  • The effect of the relative location between pre-swirl nozzle and receiver hole on the performance of radial on-board injection type pre-swirl system was analyzed. In this study, tendency of the change of discharge coefficient and temperature drop efficiency were analyzed for 20 design points through the combination of 5 pre-swirl nozzle location and 4 receiver hole location. Discharge coefficient of system tended to be similar to the pressure ratio of the pre-swirl nozzle. System performance variation occurred as the flow structure in the cavity was affected by the surface, and the influence of the stationary surface is greater than that of the rotating surface. Discharge coefficient of system changed -1.39% to 1.25% and temperature drop efficiency changed -5.41% to 2.94% refer to reference design point.

Flow Characteristics of An Atmospheric Pressure Plasma Torch

  • Moon, Jang-H.;Kim, Youn-J.;Han, Jeon-G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.69-73
    • /
    • 2003
  • The atmospheric pressure plasma is regarded as an effective method for surface treatments because it can reduce the period of process and doesn't need expensive vacuum apparatus. The performance of non-transferred plasma torches is significantly depended on jet flow characteristics out of the nozzle. In order to produce the high performance of a torch, the maximum discharge velocity near an annular gap in the torch should be maintained. Also, the compulsory swirl is being produced to gain the shape that can concentrate the plasma at the center of gas flow. In this work, the distribution of gas flow that goes out to atmosphere through a plenum chamber and nozzle is analyzed to evaluate the performance of atmospheric pressure plasma torch which can present the optimum design of the torch. Numerical analysis is carried out with various angles of an inlet flow velocity. Especially, three-dimensional model of the torch is investigated to estimate swirl effect. We also investigate the stabilization of plasma distribution. For analyzing the swirl in the plenum chamber and the flow distribution, FVM (finite volume method) and SIMPLE algorithm are used for solving the governing equations. The standard k-model is used for simulating the turbulence.

The Initial Film Flow Development of the High-Pressure Swirl Spray (고압스월분무 액막유동의 초기 발달과정에 대한 연구)

  • Moon, Seok-Su;Abo-Serie, Essam;Choi, Jae-Joon;Bae, Choong-Sik
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.212-219
    • /
    • 2006
  • The initial film flow development of the high-pressure swirl spray was investigated at different injector operating conditions to analyze film flow development and to provide the input data for the modeling works. This result can be also useful to verify the previously simulated results. The initial flow conditions such as liquid film thickness, flow angle and flow divergence are obtained by visualizing the inside and near the nozzle flow with a microscopic imaging system. The visualized images are quantified using an image processing tool. From the information of liquid film thickness and flow angle, the initial axial and tangential velocity and the swirl number of the swirl spray are successfully determined at various operating conditions. The experimental results showed that the initial liquid film thickness, flow angle and flow divergence are remained constant when the injection pressure is increased. However, initial film conditions are severely changed when the fuel temperature is increased. The swirl number remained constant when the injection pressure is increased while it showed increased value at high fuel temperature condition.

  • PDF

A Numerical Study on the Spray Characteristics of the Swirl-Type Gasoline Direct Injector (스월형 가솔린 직분식 인젝터의 분무특성에 대한 수치적 연구)

  • 이충훈;정수진;김우승;이기형;배재일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.9-21
    • /
    • 2000
  • In this study, the characteristics of high-pressure swirl injector have been studied using a commercial CFD code, STAR-CD and experiment to investigate the effect of the length of orifice and swirl port on the spray characteristics. Influences of swirl port angle and initial conditions have also been examined in terms of penetration depth and Sauter`s mean diameter. Computed results of the spray characteristics are compared with experimental results. The results show that the tangential velocity at the nozzle exit decreases, but the axial velocity increases as swirl port angle is increased. Hence, the static flow rate increases, but the initial spray angle decreases with increasing the swirl port angle. It is also shown that the values of the initial SMD used as input data for spray simulation influences the penetration depth and SMD. The spray pattern from the present numerical simulation agrees well with experimental result.

  • PDF

Evaluation of the Induction and Ionized Field Charging Methods for Electrostatic Nozzles of Orchard Sprayer

  • Laryea, G.N.;No, S.Y.;Lee, D.H.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 2002
  • Two charging methods of electrostatic nozzle, i.e. induction and ionized field corona charging, were designed and evaluated for orchard sprayer application. An artificial (metallic) target was constructed and used in this experiment. The charge-to-mass ratio for the induction electrode was measured by using the Faraday cage. Two conventional pressure-swirl nozzles have been employed with different orifice diameters under the same experimental operating conditions. A commercial pressure-swirl nozzle with orifice diameter of 1.0 was used for the conventional spray. The diameter of the electrostatic was 0.59 mm. The experiment was carried out for individual nozzle sprays at $0^{\circ}$, $20^{\circ}$ and $50^{\circ}$ oriented angles and three nozzles, sprayed simultaneously at a distance of 1.0 and 2.0 m from the nozzle tip to the target. The nozzles were mounted on a carriage with constant speed of 1.26 km/h with a blower attached. The weighing method was employed to evaluate for the spray deposition, ground loss and estimated drift. The results show more promising for the induction charging method, especially at $20^{\circ}$oriented angle at a distance of 1.0 m from the target for a single nozzle and when all three nozzles were operated simultaneously for spray deposition. The results of the induction charging method show promising with the developed electrostatic technique.

  • PDF