• 제목/요약/키워드: Pressure-rise rate

검색결과 278건 처리시간 0.032초

엔진아나라이져의 개발 (The development of engine analyzer)

  • 이재순;임성식;이용규
    • 오토저널
    • /
    • 제11권6호
    • /
    • pp.89-96
    • /
    • 1989
  • Engine analyzer is developed with the aids of personal computer, A/D converter, interfacing signal transducer and data processing computer programs. The objective of this development are that it should firstly be produced at the resonable low price compared with imported one taking advantage of using existing personal computer and printer, and it should also give good quality of performance. For the attainment of this objective, A/D converter should have been developed to meet the price limit of the equipment. The experiment is performed in a 4 cycle 4 cylinder gasoline engine by this analyzer, and all the information which are necessary for the combustion analysis can be obtained through the processing of the pressure data that are stored in the computer. These are pressure-volume curve, pressure-crank angle curve, the rate of pressure rise and heat release versus crank angle curve etc. With this developed experimental system of resonable price, it will be considered that more easy way of engine data pick-up and processing is possible.

  • PDF

메탄올 혼합연료가 기관 연소 특성에 미치는 영향 (Effect of methanol-blended fuel properties on the combustion characteristics of a gasoline engine)

  • 조행묵;이창식
    • 대한기계학회논문집B
    • /
    • 제20권10호
    • /
    • pp.3381-3386
    • /
    • 1996
  • The engine performance and combustion characteristics of methanol blended fuel in spark ignition engine were discussed on the basis of experimental investigation. The effects of methanol blending fuel on combustion in cylinder were investigated under various conditions of engine cycle and blending ratio. The results showed that the engine performance was influenced by the methanol blending ratio and the variations of operating conditions of test engine. The increase of fuel temperature brought on the improvement of combustion characteristics such as cylinder pressure, the rate of pressure rise and heat release in an engine. The burning rate of fuel-air mixture, the exhaust emissions and the other characteristics of performance were discussed also.

The Influence of Fuel Spray Characteristics on the Engine Performance and Emission in the Direct Injection Type Diesel Engine

  • Bakar Rosli Abu;Lee Chang-Sik
    • 한국분무공학회지
    • /
    • 제2권2호
    • /
    • pp.43-50
    • /
    • 1997
  • The purpose of this investigation is to carry out, the influence factor on the fuel spray characteristics for improve the engine combustion performance and exhaust omission in direct injection type diesel engine. The fuel properties, fuel spray structure and the shape or the piston surface of diesel engine play an important role of engine combustion process and exhaust emission. In order to obtain the effect of using auxiliary chamber and emulsified fuel on the fuel spray characteristics the experiment un conduct with single cylinder direct injection type diesel engine to examine the engine performance and gas emission. The results of this investigation showed that the increase auxiliary chamber volume and emulsified fuel give an effect on the fuel spray characteristics by reduced the concentration of nitric oxide emission in the combustion chamber. Also it can improve the combustion characteristics such as cylinder pressure, rate of pressure rise and rate of heat release.

  • PDF

고온 항공유의 오리피스 인젝터 분사특성 수치해석 (Numerical Simulation of Orifice Injection Characteristics of High Temperature Aviation Fuel)

  • 황성록;이형주
    • 한국분무공학회지
    • /
    • 제28권2호
    • /
    • pp.89-96
    • /
    • 2023
  • This study presents a numerical simulation investigating hydrodynamic characteristics of high-temperature hydrocarbon aviation fuel injected through a plain orifice injector. The analysis encompassed the temperature range up to the critical point, and the obtained results were compared with prior experimental observations. The analysis unveiled that the injector's exit pressure remains equivalent to the ambient pressure when the fuel injection temperature is below the boiling point. However, when the fuel temperature surpasses the boiling point, the exit pressure of the injector transitions to the saturated vapor pressure corresponding to the fuel injection temperature. Consequently, the exit pressure of the injector increases in tandem with the rapid increase of the saturation vapor pressure due to escalating fuel temperatures. This rise in the exit pressure necessitates a proportional increase in fuel injection pressure to ensure a fixed fuel mass flow rate. Furthermore, the investigation revealed that the discharge coefficient obtained by applying the exit pressure instead of the ambient pressure did exhibit no decrease, but rather was maintained at a nearly constant value, comparable to its level below the boiling point.

직접분사식 압축점화 디젤엔진의 연소 및 배기특성에 관한 연구 (A Study on Combustion and Emission Characteristics in Compression Ignition CRDI Diesel Engine)

  • 김기복;최일동;하지훈;김치원;윤창식
    • 한국산업융합학회 논문집
    • /
    • 제17권4호
    • /
    • pp.234-244
    • /
    • 2014
  • Recently it has been focused that the automobile engine has developed in a strong upward tendency for the use of the high viscosity and poorer quality fuels in achieving the high performance, fuel economy, and emission reduction. Therefore it is not easy to solve the problems between low specific fuel consumption and exhaust emission control at motor cars. In this study, it is designed and used the engine test bed which is installed with turbocharger and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters, and they were engine speeds(rpm), injection timing(bTDC), and engine load(%). From the result of an experimental analysis, peak cylinder pressure and the rate of pressure rise were increased, and the location of it was closer toward top dead center according to the increasing of engine speed and load, and with advancing injection timing. The combustion characteristics are effected by fuel injection timing due to be enhanced the mass burned fraction. Using the engine dynamometer for analyzing the engine performance, the engine torque and power have been enhanced according to advancing the fuel injection timing. In analyzing of exhaust emission, there has been a trade-off between PM and NOx with increasing of engine speed and load, and with advanced injection timing. The experimental data are shown that the formation of NOx has increased and PM, vice versa.

냉동시스템의 운전조건에 따른 열교환기 내장형 어큐뮬레이터의 성능 특성 (Performance Characteristics of Accumulator Heat Exchangers with Operating Conditions of a Refrigeration System)

  • 강훈;박차식;전종욱;김용찬
    • 설비공학논문집
    • /
    • 제18권12호
    • /
    • pp.984-991
    • /
    • 2006
  • The applications of multi air-conditioners into multiplex and high-rise buildings have been increased by replacing central air-conditioning systems. The pipe length and altitude difference between the indoor and outdoor units can be increased based on installation conditions, which may increase the possibility of flash gas generation at the expansion device inlet. The flash gas generation causes rapid reduction of refrigerant flow rate passing through the expansion device, yielding lower system efficiency. Accumulator heat exchangers have been widely used in multi air-conditioners in order to minimize flash gas generation and obtain system reliability. However, the studies on the heat transfer characteristics and pressure drops of accumulator heat exchangers are very limited in open literature. In this study, the heat transfer rates and pressure drops of accumulator heat exchangers were measured with refrigerant flow rate and operating conditions by using R-22. The heat transfer rate increased with the increase of refrigerant flow rate, while subcooling decreased. The heat transfer rate enhanced with the reduction of inlet superheat and subcooling due to the increased temperature difference between the accumulator and inner heat exchanger.

수소충전 시 압력상승률이 표준충전프로토콜 중요변수에 미치는 영향 해석 (An Analysis of the Effect of Pressure Ramp Rate on the Major Parameters of the Standard Hydrogen Fueling Protocol)

  • 채충근;김용규;채승빈
    • 한국가스학회지
    • /
    • 제24권1호
    • /
    • pp.23-32
    • /
    • 2020
  • 수소자동차용기에 높은 압력(70 MPa)의 수소를 빨리 완전 충전하는 것은 쉽지 않다. 그 이유는 줄-톰슨효과 등에 의해 발생하는 열로 인하여 용기내의 온도가 급속히 상승하기 때문이다. 미국의 SAE J2601, 일본의 JPEC-S 0003 같은 충전프로토콜이 제정되어 운영되고 있다. 그러나 이들 프로토콜에는 수많은 가정이 도입되어 내용이 너무 복잡하고 적용범위가 제한적이라는 문제가 있다. 이 연구는 완벽한 실시간 통신에 기반한 새로운 프로토콜을 개발하기 위해서 수행되었다. 이 연구에서는 수소충전 시뮬레이션 프로그램을 이용하여 압력상승률이 자동차용기내의 온도 및 압력 상승과 충전유속에 어떠한 영향을 미치는지 살펴보았다. 그 결과 압력상승률 결정 시 우선 고려하여야 할 매개변수는 자동차 용기의 온도라는 것을 알 수 있었다.

프로필렌의 화재 및 폭발 위험성 평가를 위한 온도 200 ℃에서 산소농도와 압력의 변화에 따른 실험적 연구 (Experimental Study on the Changes in the Oxygen Concentration and the Pressure at Temperature of 200 ℃ for the Assessment of the Risks of Fire and Explosion of Propylene)

  • 최유정;최재욱
    • Korean Chemical Engineering Research
    • /
    • 제58권3호
    • /
    • pp.356-361
    • /
    • 2020
  • 프로필렌은 석유화학제품의 제조 시 기초 유분으로 산업 공정에서 널리 사용되고 있으며, 새로운 물질을 제조하기 위하여 200 ℃ 이상의 온도에서 합성되고 있다. 그러나 프로필렌은 인화성 가스로써 화재 및 폭발의 위험성이 존재하므로, 이를 방지하기 위하여 불활성 가스 중 가격이 저렴하고 공기 중 가장 많이 존재하는 질소를 주입하여 사용한다. 본 연구에서는 프로필렌-질소-산소를 사용하여 온도 200 ℃에서 압력의 변화(0.10 MPa, 0.15 MPa, 0.20 MPa, 0.25 MPa)에 따른 실험적 연구를 수행하였다. 산소농도가 21%일 때 압력이 0.10 MPa에서 0.25 MPa로 상승할수록 폭발 하한계는 2.2%에서 1.9%로감소하였으며, 폭발상한계는 14.8%에서 17.6%로증가하였다. 또한최소산소농도는 10.3%에서 10.0%로 감소하여 압력이 증가할수록 폭발 범위가 넓어져 위험성이 증가하였다. 폭발압력은 압력이 0.10 MPa에서 0.25 MPa로 상승할수록 1.84 MPa에서 6.04 MPa로 증가하였으며, 최대 폭발압력상승속도는 90 MPa/s에서 298 MPa/s로 크게 증가하였다. 고온 및 고압에서는 폭발의 위험성이 증가하므로 프로필렌을 사용하는 사업장의 폭발사고 예방을 위한 기초자료를 제공하고자 한다.

PERISTALTIC PUMPING OF AN ELLIS FLUID IN AN INCLINED ASYMMETRIC CHANNEL

  • A. SMALL;P. NAGARANI;M. NARAHARI
    • Journal of applied mathematics & informatics
    • /
    • 제41권1호
    • /
    • pp.51-70
    • /
    • 2023
  • The flow of an incompressible Ellis fluid in an inclined asymmetric channel, driven by peristaltic waves was studied under low Reynolds number and long wavelength assumptions. The wave on each side of the channel are assumed to be an infinite train of sinusoidal waves, both having the same constant wave speed and wavelength however, they vary in wave amplitude, channel half width and phase angle. We derived expressions for the axial and transverse velocities, volume flow rate, pressure rise per unit wavelength and streamlines. The effects of varying the wave amplitudes, the phase angle, the channel width, the angle of inclination of the channel as well as the fluid parameters on the flow were analyzed. Trapping conditions were determined and the presence of reflux highlighted using the streamlines for the necessary channel and fluid conditions. By varying the fluid parameters, changes in the fluid that deviated from the Newtonian case resulted in a reduction in the axial velocity in the neighborhood of the center of the channel and a simultaneous increase in the velocity at the periphery of the channel. A nonlinear relation was observed with the pressure rise and the volume flow rate. This nonlinear relation is more pronounced with an increase in the absolute value of the volume flow rate. For Newtonian fluids a linear relation exists between these two variables. The fluid parameters had little effects on the streamlines. However, variations of the wave amplitudes, volume flow, channel width and phase angle had greater effects on the streamlines and hence the trapped region.

Supercritical $CO_2$ Extraction of Whole Berry Oil from Sea Buckthorn ($Hippopha\ddot{e}$ rhamnoides var. sp) Fruit

  • Xu, Xiang;Gao, Yanxiang;Liu, Guangmin;Zheng, Yuanyuan;Zhao, Jian
    • Food Science and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.470-474
    • /
    • 2008
  • The whole berry, pulp, and seed of sea buckthorn fruit were extracted with supercritical $CO_2$ to produce edible oils. The effects of extraction pressure, temperature, and $CO_2$ flow rate on the oil yield and extraction rate were investigated, and the fatty acid composition, tocopherol, and carotenoid contents of the oils were compared. The results showed that the extraction rate was affected by pressure, temperature, and $CO_2$ flow rate and, in general, the yield increased with a rise in any of the 3 variables. Fatty acids in the whole berry and pulp oil were dominated by monounsaturated fatty acids (>64%), followed by saturated fatty acids (about 30%). In contrast, fatty acids in the seed oil consisted mainly of polyunsaturated (>60%) and monounsaturated fatty acids (>24%). The seed oil had a slightly higher content of tocopherols, but a much lower content of carotenoids, compared with the whole berry or pulp oil.