• Title/Summary/Keyword: Pressure-Roller

Search Result 140, Processing Time 0.024 seconds

Stress Analysis on the Cam-Roller Contact Parts in a Marine Diesel Engine (박용 디젤기관 캠-롤러 접촉부의 응력 해석)

  • 김형자;임우조;조용주;구영필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.174-180
    • /
    • 2002
  • The subsurface stress field beneath the roller's contacting surface due to the contact pressure in lubricating condition has been calculated. Main purpose of this study in view of engineering is to prove the validity of the numerical profile roller presented by Koo et al. The Love's rectangular patch solution was used to obtain the subsurface stress field. The stress field of the numerical profile roller was compared with the one of the existing dub-off profile roller The analysis results show reduced subsurface stresses for the numerical profile roller.

구름요소의 프로파일 설계에서의 EHL해석의 작용

  • 박태조;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1991.06a
    • /
    • pp.50-54
    • /
    • 1991
  • This paper shows the effect of axial profile on the elastohydrodnamic lubrication (EHL) behavior of axially profiled cylindrical roller. For two different type of profiles which have nearly similar elastostatic pressure distribution, the EHL results show large differences. Especially the difference in film shape is larger than that of pressure distribution. Therefore, the magnitude of the minimum film thickness should be a major criteria to design the axial profile of the roller and a new design procedure is presented which take into account the minimum film thickness as well as the pressure distribution.

  • PDF

Elastohydrodynamic Lubrication of a Profiled Cylindrical Roller (I) (프로파일링을 한 원통형 로울러의 탄성유체윤활 (I))

  • 박태조;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.262-270
    • /
    • 1988
  • A numerical solution of the elastohydrodynamic lubrication problem for an axially profiled cylindrical roller is presented. The problem is analyzed using finite difference method and Newton-Raphson method. The effect of side leakage and compressibility of lubricants are considered and axially nonuniform grid is constructed over the computation zone. Isobars, contours and section graphs show pressure variation and film shape. Contours plot is very similar to the previously reported experimental observations based upon optical interferometry. The maximum pressure and the minimum film thickness occur near the start of the profiling. The method used makes it possible to design an optimum axial profile of the roller to increase the life of rolling bearings.

Numerical Analysis of Misaligned Finite Line Contacts EHL Problem (Misalignment가 있는 유한한 선접촉 EHL 문제의 수치해석)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.26 no.5
    • /
    • pp.263-271
    • /
    • 2010
  • The rollers of cylindrical roller bearing are axially profiled to relieve high edge stress concentration caused by mainly their finite length and by misalignment. In this paper, a numerical analysis is carried to study the EHL of misaligned (tilted) rollers with axially profiled ends. Using a finite difference method with non-uniform grids and the Newton-Raphson method, the highly nonlinear EHL problems are systematically solved. Physically consistent solutions are obtained for moderate load, material parameters and very small misalignment. For different misalignment angles, contours and sectional plots of pressure and film shape near both edge regions are compared. The asymmetric pressure distributions and film shapes show that the EHL results of finite line contacts are highly dependent upon very small amounts of roller misalignment. Especially, the effect of misalignment on the EHL pressure distribution is much higher than the film shapes.

Improving Stability of Motor Generator Set of the Power Supply System for CEDM in Korean Standard Nuclear Power Plants (한국표준형 원전 제어봉구동장치 전원공급계통의 전동발전기 세트 안정성 개선)

  • Choi, Il Young;Kim, Jin Weon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2016
  • This paper analyzed a root cause of abnormality in the temperature and vibration at generator-side bearing of motor generator set (MG Set), which is a power supply system to control element drive mechanism (CEDM) of nuclear power plants (NPPs), and modified the design of roller-type and sealing method to improve the abnormalities. From the inspection of MG Set and analysis of temperature variation during service, it was found that the abnormal temperature transition was basically associated with original design of generator-side bearing, whose roller was axially restrained by inner race, and that the abnormal vibration level was caused by inserting small chips of cage and V-ring, which were generated due to the abnormal temperature transition at roller bearing. Type of bearing and sealing method were modified based on these analyses. The temperature and vibration level measured at roller bearing showed that the modifications clearly improved the operational stability of MG Set.

Roller Design of IRB Seismic Isolation Device Using Test Evaluation : Part II. Heat Treatment of Material (시험평가법을 이용한 IRB 면진장치 롤러 설계 : Part 2. 소재 열처리)

  • Park, Young-Gee;Ha, Sung Hoon;Seong, Min-Sang;Jeon, Junchul;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.332-337
    • /
    • 2013
  • This paper presents a subsequent research work on the roller design of IRB(isolation roller bearing) seismic isolation device presented in Part 1 by focusing on heat treatment. The hardness and friction factor are very important factors of material and after-treatment process selection. Normally, roller bearing consists of roller and retainer. The roller gets high pressure constantly, while the retainer gets tensile and compressive stress. Therefore, sensitive material selection and heat treatment of each part is quite important. In this experimental evaluation, carbon steel, chrome special steel and others are employed and their characteristics after heat treatment are identified. Each material is prepared by refining high frequency heat treatment. The friction factor and static load capacity of manufactured material are experimentally identified and destructive test of material is processed. Optimal material and heat treatment conditions for IRB roller bearing are determined based on experiment results.

Analysis of a Hot Rolling Roller and Spring-back of Electrode Materials for Secondary Batteries (이차전지 전극제조용 열간압연롤러와 전극재료의 열 변형 및 스프링백 해석)

  • Kim, Kyung-Sik;Kim, Cheol
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.538-543
    • /
    • 2008
  • A roller with a shaft and hot oil paths for pressing electrodes of polymer batteries were modeled and analyzed by FEM. There are many hot oil tubes in the roller and shaft, through which $72^{\circ}C$ hot oil flows for heating the surface of a roller and shaft. Thermal deformations and temperatures distributions of the roller and shaft were calculated and a convection boundary condition on surfaces was used. The influence of existence of a groove in the shaft on the flatness of a roller surface caused by thermal deformation was investigated. In addition, the amount of spring-back of electrodes under vacuum pressure and heating was calculated after the hot rolling process. It was shown from this study that the groove in one shaft had a favorable effect on the surface flatness.

  • PDF

Flash Temperature of the Cam-Roller Contacting Surface in a Marine Diesel Engine (박용 디젤기관 캠-롤러 접촉부의 표면 상승 온도)

  • 김남식;김민남;구영필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.200-208
    • /
    • 2002
  • The flash temperature of the cam-roller contacting surface for a marine diesel engine was analysed numerically. The elastohydrodynamic lubrication pressure and film thickness were adopted to get more accurate frictional coefficient, heat flux and temperature distribution. The maximum flash temperature was increased with both the increasing slip ratio of the contacting surfaces and increasing external load. This study tells that the temperature analysis is an indispensable procedure in designing elastohydrodynamic lubrication contacts on which the slip occurs.

A Study on the Optimum Clearance Selection of Fuel Pump Journal Bearing with Elasto-hydrodynamic Lubrication Analysis (탄성유체윤활해석에 의한 연료 펌프 저널베어링 최적간극 선정 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • The electric controlled marine diesel engine has fuel pump generating the high pressurized fuel for fuel injection to combustion chamber via a common rail. Fuel pump consists of a cam-roller system. Journal bearing installed between a roller and a cam-roller pin is subjected to fluctuating heavy and instant loads by cam lift. First, Kinematic analysis is carried out to predict bearing loads during one cycle acting on the journal bearing. Second, flexible multi-body dynamic analysis and transient elasto-hydrodynamic(EHD) lubrication analysis for journal bearing considering elastic deformation of cam-roller pin, roller and bearing are conducted using AVL EXCITE/PU software to predict lubrication performance. The clearance ratio and journal groove shape providing lubrication oil are important parameter in bearing design having good performance and can be changed easier than other design parameters such as diameter, width, oil supply pressure and bearing material grade. Generally, journal bearing performance is represented by the minimum oil film thickness(MOFT) and peak oil film pressure(POFP). As well as the traditional design parameters(MOFT, POFP), in this study, temperature rise of lubrication oil is also evaluated through the side leakage flow of supplied oil. By the evaluating MOFT, POFP and temperature rise, the optimum bearing clearance ratio is decided.

A Computational Analysis of Air Entrainment with a Nip Roller

  • Lee, Jae-Yong;Chang, Young-Bae;Shelton, John J.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2002.11a
    • /
    • pp.81-90
    • /
    • 2002
  • Air entrainment of a winding roll with a nip roller was studied numerically. The amount of air entrainment between two rotating rollers was obtained by solving lubrication equation, Reynolds equation, which neglect the existence of a web. However, the numerical model of this study included the web existence, therefore it considered the two lubricating air films between a winding roll and a web and also between a nip roller and the web. The pressure profiles and gap profiles of the two films were obtained by solving lubrication equation for the two air films and force balance equation of the web. Ballooning phenomenon was examined in terms of nip force, wrap angle, web stiffness, web speed, and web tension. This ballooning phenomenon caused by the back flow of the air film blocked by the nip roller. Air entrainment of the two numerical models was compared.

  • PDF