• Title/Summary/Keyword: Pressure sensors

Search Result 955, Processing Time 0.025 seconds

Development of body position sensor device for posture correction training (자세 교정훈련을 위한 체위 변환 감지 센서 디바이스의 개발)

  • Choi, Jung-Hyeon;Park, Jun-Ho;Seo, Jae-Yong;Kim, Soo-Chan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.2
    • /
    • pp.80-85
    • /
    • 2020
  • Recently the incidence of musculoskeletal disorders in students and office workers is increasing, and the necessity of maintaining correct posture and corrective training is required, but related research is insufficient. In the previous study, a membrane sensor or a pressure sensor was placed on the seat cushion to see the deviation of the body weight, or a sensor that restrained the user was attached to measure the position change. In this study, a sensor device for detecting a position change in consideration of wearing comfort was developed, and the measured angle was verified through an analysis app. A sensor device consisting of an IMU sensor is attached to the cervical spine and vertebra spine to measure the position transformation in the sitting position. The change value of the position measured by the two sensors was converted into an angle, and the angle value is displayed in real time through the analysis app. In this study, the possibility of measuring the real-time change value according to the change in position, the convenience of wearing, and the tendency of angle measurement were proved. Future research should proceed with more precise angle calculation and correction of motion noise.

Fabrication of surface-enhanced Raman scattering substrate using black silicon layer manufactured through reactive ion etching (RIE 공정으로 제조된 블랙 실리콘(Black Silicon) 층을 사용한 표면 증강 라만 산란 기판 제작)

  • Kim, Hyeong Ju;Kim, Bonghwan;Lee, Dongin;Lee, Bong-Hee;Cho, Chanseob
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.267-272
    • /
    • 2021
  • In this study, Ag was deposited to investigate its applicability as a surface-enhanced Raman scattering substrate after forming a grass-type black silicon structure through maskless reactive ion etching. Grass-structured black silicon with heights of 2 - 7 ㎛ was formed at radio-frequency (RF) power of 150 - 170 W. The process pressure was 250 mTorr, the O2/SF6 gas ratio was 15/37.5, and the processing time was 10 - 20 min. When the processing time was increased by more than 20 min, the self-masking of SixOyFz did not occur, and the black silicon structure was therefore not formed. Raman response characteristics were measured based on the Ag thickness deposited on a black silicon substrate. As the Ag thickness increased, the characteristic peak intensity increased. When the Ag thickness deposited on the black silicon substrate increased from 40 to 80 nm, the Raman response intensity at a Raman wavelength of 1507 / cm increased from 8.2 × 103 to 25 × 103 cps. When the Ag thickness was 150 nm, the increase declined to 30 × 103 cps and showed a saturation tendency. When the RF power increased from 150 to 170 W, the response intensity at a 1507/cm Raman wavelength slightly increased from 30 × 103 to 33 × 103 cps. However, when the RF power was 200 W, the Raman response intensity decreased significantly to 6.2 × 103 cps.

A Study on Mobile Robot for Posture Control of Flexible Structures Using PI Algorithm

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.9-14
    • /
    • 2022
  • In this study, we propose a method for moving a device such as a flexible air sculpture while stably maintaining the user's desired posture. To accomplish this, a robot system with a structure of a mobile robot capable of running according to a given trajectory was studied by applying the PI algorithm and horizontal maintenance posture control using IMU. The air sculptures used in this study often use thin strings in a fixed posture. Another method is to put a load on the center of gravity to maintain the posture, and it is a system with flexibility because it uses air pressure. It is expected that these structures can achieve various results by combining flexible structures and mobile robots through the convergence process of digital sensor technology. In this study, posture control was performed by fusion of the driving technology of AGV(Automatic Guided Vehicle),, a field of robot, and technologies applying various sensors. For verification, the given performance evaluation was performed through an accredited certification test, and its validity was verified through an experiment.

Introduction to Research Trend of Real-Time Measurement for Wear of TBM Disc Cutter (TBM 디스크커터의 마모량 실시간 계측을 위한 연구현황)

  • Min-Sung, Park;Min-Seok, Ju;Min-Sung, Cho;Jun, Lee;Jung-Joo, Kim;Hoyoung, Jeong
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.478-490
    • /
    • 2022
  • TBM disc cutter, which is the main cutting tool of tunnel boring machine (TBM), is replaced when it is excessively worn during the boring process. Disc cutters are usually monitored by workers at cutterhead chamber, and they check the status and wear amount of cutters. Because cutterhead chamber is usually in dangerous circumstance due to high pressure and instability of excavation surface, the measurement by manpower occasionally results in inaccuracy of measurement result. In order to overcome the limitations, the real-time disc cutter monitoring techniques have been developed in some foreign countries. This paper collected the current status of disc cutter monitoring system from the literature. Several types of sensors are used to measure the cutter wear, and it is believed that the collected information can be useful reference when similar domestic technologies are developed in the future.

Design and Implementation of an Indoor Particulate Matter and Noise Monitoring System (실내 미세먼지 및 소음 모니터링 시스템 설계 및 구현)

  • Cho, Hyuntae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • As the COVID-19 pandemic situation worsens, the time spent indoors increases, and the exposure to indoor environmental pollution such as indoor air pollution and noise also increases, causing problems such as deterioration of human health, stress, and discord between neighbors. This paper designs and implements a system that measures and monitors indoor air quality and noise, which are representative evaluation criteria of the indoor environment. The system proposed in this paper consists of a particulate matter measurement subsystem that measures and corrects the concentration of particulate matters to monitor indoor air quality, and a noise measurement subsystem that detects changes in sound and converts it to a sound pressure level. The concentration of indoor particulate matters is measured using a laser-based light scattering method, and an error caused by temperature and humidity is compensated in this paper. For indoor noise measurement, the voltage measured through a microphone is basically measured, Fourier transform is performed to classify it by frequency, and then A-weighting is performed to correct loudness equality. Then, the RMS value is obtained, high-frequency noise is removed by performing time-weighting, and then SPL is obtained. Finally, the equivalent noise level for 1 minute and 5 minutes are calculated to show the indoor noise level. In order to classify noise into direct impact sound and air transmission noise, a piezo vibration sensors is mounted to determine the presence or absence of direct impact transmitted through the wall. For performance evaluation, the error of particulate matter measurement is analyzed through TSI's AM510 instrument. and compare the noise error with CEM's noise measurement system.

Study on Validity of Pre-cooling System for Hydrogen Gas Using Cryocooler Part I: Experimental Investigation and Theoretical Analysis (극저온 냉동기를 활용한 기체수소 예냉 시스템의 검증에 관한 연구 Part I: 실험적 연구 및 이론적 분석)

  • DONG WOO HA;HYUN WOO NOH;YOUNG MIN SEO;TAE HYUNG KOO;ROCK KIL KO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.4
    • /
    • pp.350-357
    • /
    • 2023
  • In this study, the experimental investigation and theoretical analysis were conducted to verify the cooling capacity of the cryocooler used for pre-cooling of hydrogen gas. The effect of the flow rate on a copper pipe attached to the bottom of the cryocooler, which has a coil shape in a hydrogen line, was investigated. Temperature sensors were strategically placed at various positions on the cryocooler to analyze the temperature variations with respect to the flow rate. In this study, the thermal properties of hydrogen for the pressure and temperature were utilized using REFPROP to analyze the cooling capacity of the cryocooler. Based on the experimental results derived from this study, the cooling capacity of the cryocooler for pre-cooling hydrogen gas was considered by calculating the cooling temperature according to the flow rate through theoretical analysis.

The Behavior and Capacity of Lateral Loaded Rigid Pile Characteristics in Multi-layered Soil Conditions (다층지반에 관입된 강성말뚝의 수평 거동 및 수평 지지력 특성)

  • Kyung, Doo-Hyun;Kang, Beong-Joon;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.77-90
    • /
    • 2009
  • In this study, experimental analysis was performed about lateral load capacity and behavior of laterally loaded-bored rigid piles in muti-layered soil conditions. Lateral pile load tests were performed for muti-layerd soils consisting of different relative density. Ultimated lateral load capacities were measured from lateral load-displacement curves and compared with estimated values using theoretical methods. Bending moments and unit lateral capacity distribution of surrounding piles were measured from attached strain gauges and earth pressure sensors on the pile. It was found that ultimated lateral load capacities were different from the muti-layered soil conditions, and measured values were lower than estimated values. The bending moment distributions of the pile were similar all the time. Unit lateral capacity distributions were a little different from muti-layered soil conditions, but basically similar to the distribution proposed by Prasad and Chari (1999).

Development of Smart Air Car Seat Control System for Automatic Air Conditioning using IoT Sensor (IoT 센서를 이용한 공기 자동조절 스마트 에어카시트 제어 시스템 개발)

  • Kim, Dae-Hun;Jeong, Sueun;Park, Suhyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.208-210
    • /
    • 2021
  • As the number of objects connected to the Internet increases rapidly, intelligent device development projects are gradually expanding that provide direct value to humans, away from simple monitoring functions, including sensors and communication functions, or delivery to servers.It is expected that the device will develop a technology that analyzes surrounding sensing information and changes the surrounding environment in consideration of users' preferences or safety. By establishing a biosignal measurement system in a developed product that can bring various effects using air, it will be possible to grasp the user's condition through a pattern of change in pressure distribution when seated. This paper proposes a construction system that enhances the comfort of using an air car seat through contact between a temperature measurement sensor and a user, and enables effective management of measured biosignals by linking them with an air pump control system.

  • PDF

Ultrasensitive Crack-based Mechanosensor Inspired by Spider's Sensory Organ (거미의 감각기관을 모사한 초민감 균열기반 진동압력센서)

  • Suyoun Oh;Tae-il Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Spiders detect even tiny vibrations through their vibrational sensory organs. Leveraging their exceptional vibration sensing abilities, they can detect vibrations caused by prey or predators to plan attacks or perceive threats, utilizing them for survival. This paper introduces a nanoscale crack-based sensor mimicking the spider's sensory organ. Inspired by the slit sensory organ used by spiders to detect vibrations, the sensor with the cracks detects vibrations and pressure with high sensitivity. By controlling the depth of these cracks, they developed a sensor capable of detecting external mechanical signals with remarkable sensitivity. This sensor achieves a gauge factor of 16,000 at 2% strain with an applied tensile stress of 10 N. With high signal-to-noise ratio, it accurately recognizes desired vibrations, as confirmed through various evaluations of external force and biological signals (speech pattern, heart rate, etc.). This underscores the potential of utilizing biomimetic technology for the development of new sensors and their application across diverse industrial fields.

Development of Test Equipment for Complex Underwater Environments (수중복합 환경시험장비의 개발에 관한 연구)

  • Kim, Jong Cheol;Lee, Gi Chun;Choi, Byung Oh;Jung, Dong Soo;Lee, Choong Sung;Jeon, Jun Wan;Lee, Jae Ho;Hwang, Kyung Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.871-877
    • /
    • 2015
  • Deep-sea equipment such as underwater robots and unmanned submersible vehicles, include various machine components and sensors, and it is important that their reliabilities be tested before use in the fields. This is necessary because they are affected by complex extreme-environment conditions, such as high pressures, extreme temperatures, and tidal forces that are present in the deep sea. We require test equipment that can conduct empirical tests in conditions that mimic these complex oceanic environments. In this study, we propose specifications that should be met, and a design plan for the primary components, which should limit their use to a maximum water pressure of 2.0 MPa, water temperature of $5{\sim}60^{\circ}C$, and a maximum flow velocity of 2 m/s. in work-in type underwater combined environment test equipment and. We present test system development procedures to verify the reliability of products and systems used in deep-sea environments.